Articles | Volume 12, issue 1
The Cryosphere, 12, 365–383, 2018
The Cryosphere, 12, 365–383, 2018

Research article 29 Jan 2018

Research article | 29 Jan 2018

Consistent biases in Antarctic sea ice concentration simulated by climate models

Lettie A. Roach et al.

Related authors

WIFF1.0: A hybrid machine-learning-based parameterization of Wave-Induced sea-ice Floe Fracture
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev. Discuss.,,, 2021
Preprint under review for GMD
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885,,, 2019
Short summary

Related subject area

Sea Ice
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525,,, 2021
Short summary
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072,,, 2021
Short summary
Calibration of sea ice drift forecasts using random forest algorithms
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004,,, 2021
Short summary
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811,,, 2021
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967,,, 2021
Short summary

Cited articles

Andersen, S., Tonboe, R., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms, Remote Sens. Environ., 104, 374–392,, 2006. a, b, c, d
Asplin, M. G., Scharien, R., Else, B., Howell, S., Barber, D. G., Papakyriakou, T., and Prinsenberg, S.: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes, J. Geophys. Res.-Oceans, 119, 2327–2343, 2014. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040,, 2017. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,, 2013. a
Briegleb, B., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., Holland, M. M., Schramm, J., and Moritz, R.: Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. NCAR/TN-463+STR, NCAR Tech. Note, NCAR, Boulder, Colorado, USA, 1–78, 2004. a
Short summary
This paper evaluates Antarctic sea ice simulated by global climate models against satellite observations. We find biases in high-concentration and low-concentration sea ice that are consistent across the population of 40 models, in spite of the differences in physics between different models. Targeted model experiments show that biases in low-concentration sea ice can be significantly reduced by enhanced lateral melt, a result that may be valuable for sea ice model development.