Articles | Volume 12, issue 1
The Cryosphere, 12, 365–383, 2018
The Cryosphere, 12, 365–383, 2018

Research article 29 Jan 2018

Research article | 29 Jan 2018

Consistent biases in Antarctic sea ice concentration simulated by climate models

Lettie A. Roach et al.

Related authors

WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814,,, 2022
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885,,, 2019
Short summary

Related subject area

Sea Ice
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275,,, 2022
Short summary
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638,,, 2021
Short summary
Wave dispersion and dissipation in landfast ice: comparison of observations against models
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575,,, 2021
Short summary
The influence of snow on sea ice as assessed from simulations of CESM2
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998,,, 2021
Short summary
Meltwater sources and sinks for multiyear Arctic sea ice in summer
Don Perovich, Madison Smith, Bonnie Light, and Melinda Webster
The Cryosphere, 15, 4517–4525,,, 2021
Short summary

Cited articles

Andersen, S., Tonboe, R., Kern, S., and Schyberg, H.: Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms, Remote Sens. Environ., 104, 374–392,, 2006. a, b, c, d
Asplin, M. G., Scharien, R., Else, B., Howell, S., Barber, D. G., Papakyriakou, T., and Prinsenberg, S.: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes, J. Geophys. Res.-Oceans, 119, 2327–2343, 2014. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040,, 2017. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720,, 2013. a
Briegleb, B., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., Holland, M. M., Schramm, J., and Moritz, R.: Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. NCAR/TN-463+STR, NCAR Tech. Note, NCAR, Boulder, Colorado, USA, 1–78, 2004. a
Short summary
This paper evaluates Antarctic sea ice simulated by global climate models against satellite observations. We find biases in high-concentration and low-concentration sea ice that are consistent across the population of 40 models, in spite of the differences in physics between different models. Targeted model experiments show that biases in low-concentration sea ice can be significantly reduced by enhanced lateral melt, a result that may be valuable for sea ice model development.