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Abstract. The simulation of Antarctic sea ice in global cli-
mate models often does not agree with observations. In this
study, we examine the compactness of sea ice, as well as the
regional distribution of sea ice concentration, in climate mod-
els from the latest Coupled Model Intercomparison Project
(CMIP5) and in satellite observations. We find substantial
differences in concentration values between different sets
of satellite observations, particularly at high concentrations,
requiring careful treatment when comparing to models. As
a fraction of total sea ice extent, models simulate too much
loose, low-concentration sea ice cover throughout the year,
and too little compact, high-concentration cover in the sum-
mer. In spite of the differences in physics between models,
these tendencies are broadly consistent across the population
of 40 CMIP5 simulations, a result not previously highlighted.
Separating models with and without an explicit lateral melt
term, we find that inclusion of lateral melt may account for
overestimation of low-concentration cover. Targeted model
experiments with a coupled ocean–sea ice model show that
choice of constant floe diameter in the lateral melt scheme
can also impact representation of loose ice. This suggests that
current sea ice thermodynamics contribute to the inadequate
simulation of the low-concentration regime in many models.

1 Introduction

The cycle of sea ice growth and melt in the Southern Ocean
is one of the largest seasonal signals on Earth. The hetero-
geneity of the sea ice cover and distribution of open water ar-
eas determine regional albedo, the reflectivity of the Earth’s
surface. This in turn impacts entrainment of irradiative en-

ergy into the ocean mixed layer (Asplin et al., 2014) and
the atmospheric energy budget (Previdi et al., 2015). Sea ice
production, which increases salinity, in areas of open water
strongly impacts the rate of Antarctic Bottom Water forma-
tion (Goosse et al., 1997), the deepest water mass. Regional
sea ice concentration thus plays an important role in the cou-
pled climate system.

Coupled climate model output collated by the World
Climate Research Programme (WCRP) under the Coupled
Model Intercomparison Project (CMIP) protocol are a valu-
able resource for understanding Earth’s climate system. Over
20 groups worldwide have contributed simulations to the lat-
est project (CMIP5) from their models, many of which are
developed independently and include different physics. The
sea ice components of these models range in complexity,
from single-layer, ocean-advected, limited-rheology models
(e.g. HadCM3; Gordon et al., 2000) to multi-layer, multiple
thickness category models with a non-linear viscous plastic
rheology and explicit melt pond formation (e.g. NorESM;
Bentsen et al., 2013; Hunke et al., 2015). Advances in Earth
system modelling have somewhat improved simulation of
Arctic sea ice compared to the previous intercomparison
project (CMIP3) (Stroeve et al., 2012), although this may re-
flect changes in forcings (Rosenblum and Eisenman, 2016)
or tuning strategy (Notz, 2015) rather than changes in model
physics. Simulation of Antarctic sea ice is not considered to
have improved (Mahlstein et al., 2013).

To make assessments like these, most model evaluation
studies quantify agreement between sea ice models and ob-
servations using sea ice extent, which is simply the area of all
grid cells with more than 15 % sea ice concentration. Turner
et al. (2013) find a wide range of seasonal cycles and trends
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in Antarctic sea ice extent across the CMIP5 ensemble. Com-
pared to observations, they find that a majority of models
underestimate the minimum sea ice extent in February. Shu
et al. (2015) evaluate simulated sea ice volume and thickness
as well as sea ice extent, finding that the CMIP5 multi-model
ensemble mean sea ice extent is fairly well simulated, though
worse in the Antarctic than in the Arctic, but suggest that the
sea ice cover is generally too thin. Zunz et al. (2013) find that
all models overestimate inter-annual variability of Antarc-
tic sea ice extent, particularly in winter. They conclude that
no CMIP5 model produces Antarctic sea ice in reasonable
agreement with observations over the satellite era.

Using only sea ice extent means that these model evalua-
tion studies do not take into account any sub-grid-scale sea
ice information, nor the regional distribution of sea ice. As
discussed by Notz (2014) and Ivanova et al. (2016), model
simulations with the same sea ice extent could have very dif-
ferent sea ice cover characteristics. Notz (2014) instead ex-
amines the frequency distribution of summer Arctic sea ice
concentration, finding that around half the CMIP5 models
have a “compact” ice cover (> 0.4 of grid cells with more
than 90 % sea ice concentration) and the rest have a “loose”
ice cover. Ivanova et al. (2016) present a similar analysis for
the Antarctic, but show only the CMIP5 multi-model mean
and do not discuss the results in detail, focusing instead on
the alternative metrics they developed.

In this study we examine model agreement with observa-
tions using various simple metrics that account for sea ice
concentration values and the regional distribution of sea ice.
Our aim is to identify biases in Antarctic sea ice that are
common across multiple models. We then carry out targeted
model experiments to investigate the role of sea ice model
thermodynamics in these biases.

2 Methods

2.1 CMIP5 models

A series of experiments from different global climate mod-
els were carried out for the Coupled Model Intercompar-
ison Project, Phase 5 (CMIP5; Taylor et al., 2012). Out-
put is freely available online from the Program for Climate
Model Diagnosis and Intercomparison. The historical exper-
iments, which are forced by observed natural and anthro-
pogenic forcings, end in 2005. To obtain a more contempo-
rary overview, we also consider the first 9 years of projec-
tion experiments from the midrange mitigation emission sce-
nario (RCP4.5). Due to the availability of observations (see
below), we conduct analysis using 1992–2014. We select the
first ensemble member for all models that provide monthly
sea ice concentration for both the historical and RCP4.5 ex-
periments, resulting in a set of 40 models (see Table 1).

2.2 Observations

Passive microwave radiometers deployed on satellites mea-
sure the brightness temperature of the Earth’s surface, and
can be used to infer sea ice concentration. There can be large
differences between satellite observations (Bunzel et al.,
2016), as various observational data sets apply different al-
gorithms to convert passive-microwave signals into sea ice
concentration. As summarized by Ivanova et al. (2014), dif-
ferences between algorithms are caused by (1) choice of ra-
diometer channels; (2) tie points, which are the brightness
temperatures used to identify different surfaces; (3) sensitivi-
ties to changes in physical temperature of the surface; and (4)
weather filters, which correct for atmospheric effects falsely
indicating the presence of sea ice.

To account for some of this product uncertainty, we
use three observational data sets: the Bootstrap algorithm
(Comiso, 1986), the NASA Team algorithm (Cavalieri et al.,
1984), and the ASI algorithm (Kaleschke et al., 2001; Spreen
et al., 2008). We do not consider data sets that merge differ-
ent observation methodologies. Bootstrap uses cluster anal-
ysis of brightness temperatures from two channels (19 and
37 GHz vertical polarization in the Antarctic), applies an
ocean mask, and is available from 1979 at a resolution
of 25 km. NASA Team uses ratios of brightness tempera-
tures (which tends to cancel out physical temperature ef-
fects) from three channels (19 GHz in the vertical and hor-
izontal, 37 GHz in the vertical), removes weather contamina-
tion based on certain spectral gradient ratios, and is available
from 1979 at a resolution of 25 km. The ASI algorithm uses
the difference in brightness temperatures between horizon-
tal and vertical polarization at 85 GHz, uses lower-frequency
channels at lower resolution to filter atmospheric effects
(which are more apparent at 85 GHz than lower frequen-
cies), and is available from 1992 at a resolution of 12 km.
We choose to conduct our analysis over 1992–2014. Boot-
strap and NASA Team data are available as monthly output;
ASI-SSMI data are only available as daily output, so the con-
centration fields are averaged for each month.

Differences between the three selected data sets are large:
in the Antarctic, the NASA Team algorithm shows the
marginal ice zone (defined as the extent of sea ice with con-
centration between 15 and 80 %) to extend over 2 million km
more than the Bootstrap algorithm in the winter months
(Stroeve et al., 2016). NASA Team is more sensitive to
clouds and wind over open water than the Bootstrap mode
(Andersen et al., 2006), while the high-frequency ASI algo-
rithm is also sensitive to such atmospheric effects (Spreen
et al., 2008). Bootstrap is more sensitive to physical tempera-
ture changes than NASA Team, and may underestimate con-
centrations at low temperatures, such as near the Antarctic
coast (Comiso et al., 1997). For low concentrations, atmo-
spheric effects, which generally lead to falsely increased sea
ice, become increasingly important (Andersen et al., 2006).
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Table 1. CMIP5 models used in this study. SIC denotes sea ice concentration.

Short name Country Resolution Sea ice model Explicit lateral melt term

ACCESS1-0 Australia 1◦× 1◦ tripolar CICE4.1 As Sect. 2.4
ACCESS1-3 Australia 1◦× 1◦ tripolar CICE4.1 As Sect. 2.4
bcc-csm1-1 China 1◦× (1− 1

3 )
◦ tripolar SIS Not included (Li, 2014)

bcc-csm1-1-m China 1◦× (1− 1
3 )
◦ tripolar SIS Not included (Li, 2014)

CanCM4 Canada 1.875◦× 1.875◦ T63 Gaussian CanSIM1 Unknown (reference N/A)
CanESM2 Canada 1.875◦× 1.875◦ T63 Gaussian CanSIM1 Unknown (reference N/A)
CCSM4 USA 1.11◦× (0.27–0.54)◦ dipolar CICE4 As Sect. 2.4
CESM1-BGC USA 1.11◦× (0.27–0.54)◦ dipolar CICE4 As Sect. 2.4
CESM1-CAM5 USA 1.11◦× (0.27–0.54)◦ dipolar CICE4 As Sect. 2.4
CMCC-CM Italy ORCA-2◦ tripolar LIM2 Not included (Rousset et al., 2015)
CMCC-CMS Italy ORCA-2◦ tripolar LIM2 Not included (Rousset et al., 2015)
CNRM-CM5 France ORCA-1◦ tripolar GELATO5 Thickness-dependent parametrization

(Salas Melia, 2002)
CSIRO-Mk3-6-0 Australia 1.875◦× 0.94◦ T63 Gaussian in-house Included, but unclear how it impacts

SIC (O’Farrell, 1998)
EC-EARTH EU ORCA-1◦ tripolar LIM2 Not included (Rousset et al., 2015)
FGOALS-g2 China (1− 1

2 )× (1−
1
2 )
◦ tripolar CSIM5 As Sect. 2.4(Briegleb et al., 2004)

GFDL-CM2p1 USA 1◦× 1◦ tripolar SIS Not included (Winton, 2001)
GFDL-CM3 USA 1◦× 1◦ tripolar SIS Not included (Winton, 2001)
GFDL-ESM2G USA 1◦× 1◦ tripolar SIS Not included (Winton, 2001)
GFDL-ESM2M USA 1◦× 1◦ tripolar SIS Not included (Winton, 2001)
GISS-E2-H USA 1◦× 1◦ tripolar in-house Not included (Russell et al., 1995)
GISS-E2-H-CC USA 1◦× 1◦ tripolar in-house Not included (Russell et al., 1995)
GISS-E2-R USA 1◦× 1.25◦ in-house Not included (Russell et al., 1995)
GISS-E2-R-CC USA 1◦× 1.25◦ in-house Not included (Russell et al., 1995)
HadCM3 UK 1.25◦× 1.25◦ in-house Not included (Gordon et al., 2000)
HadGEM2-AO South Korea 1◦× 1◦ CICE-like Parametrization for SIC< 5 %

(McLaren et al., 2006)
HadGEM2-CC UK (1− 1

3 )
◦
× 1◦ CICE-like Parametrization for SIC< 5 %

(McLaren et al., 2006)
HadGEM2-ES UK (1− 1

3 )
◦
× 1◦ CICE-like Parametrization for SIC< 5 %

(McLaren et al., 2006)
inmcm4 Russia 1◦× 1

2
◦ in-house Empirical parametrization (Yakovlev, 2003)

IPSL-CM5A-LR France ORCA-2◦ tripolar LIM2 Not included (Rousset et al., 2015)
IPSL-CM5A-MR France ORCA-2◦ tripolar LIM2 Not included (Rousset et al., 2015)
IPSL-CM5B-LR France ORCA-2◦ tripolar LIM2 Not included (Rousset et al., 2015)
MIROC4h Japan 0.28◦× 0.19◦ in-house Not included (Komuro et al., 2012)
MIROC5 Japan 1.4◦× (0.5–1.4)◦ in-house Not included (Komuro et al., 2012)
MIROC-ESM Japan 1.4◦× 1◦ in-house Not included (Komuro et al., 2012)
MIROC-ESM-CHEM Japan 1.4◦× 1◦ in-house Not included (Komuro et al., 2012)
MPI-ESM-LR Germany 1.5◦× 1.5◦ in-house Not included (Notz et al., 2013)
MPI-ESM-MR Germany 0.4◦× 0.4◦ in-house Not included (Notz et al., 2013)
MRI-CGCM3 Japan 1◦× 0.5◦ tripolar in-house Not included (Tsujino et al., 2010)
NorESM1-M Norway 1.11◦× (0.25–0.54)◦ CICE4.1 As Sect. 2.4
NorESM1-ME Norway 1.11◦× (0.25–0.54)◦ CICE4.1 As Sect. 2.4

The weather filters/ocean masks used to correct these differ
between the different algorithms.

Besides structural uncertainty in observational algorithms,
systematic biases common to all three products are possible.
Lack of validation data (Ivanova et al., 2014) mean it is dif-
ficult to quantify this, but accuracy is understood to be lower
in the presence of melt ponds or other surface melt effects
(Ivanova et al., 2014), which may act to lower retrieved con-

centrations; large fractions of thin ice (Ivanova et al., 2015);
and stormy conditions near low concentrations (Andersen
et al., 2006). Transitions between ice type can cause differ-
ences in emissivity (Grenfell and Comiso, 1986), but because
models do not simulate ice types such as grease ice, this issue
should not impact model–observation comparisons.

In this study, for some of the analysis we consider the
three observational data sets individually. In order to com-
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pare the sea ice concentration distribution from the set of
models against observations, we create an ensemble of the
ASI-SSMI, Bootstrap, and NASA Team observational prod-
ucts. Combining the observational products in this way does
have limitations, as different algorithms are likely to perform
better for certain sea ice conditions and seasons. However,
it is not clear from the literature where exactly the strengths
of the various algorithms lie, and evaluation of the differ-
ent algorithms is beyond the scope of this paper. The diffi-
culty in ranking various observational algorithms is noted by
Ivanova et al. (2014), due to a lack of validation data. They
recommend constructing an ensemble of different observa-
tional products.

2.3 Metrics

Following convention, sea ice extent is defined as the area of
all grid cells with more than 15 % sea ice concentration. Sea
ice area is the sum of the area of all grid cells with more than
15 % sea ice concentration multiplied by the sea ice concen-
tration in each grid cell.

To account for misplacement of sea ice, we use the in-
tegrated ice-edge error (IIEE) from Goessling et al. (2016).
The IIEE describes the area of grid cells where observations
and a model disagree on the presence of sea ice with con-
centration greater than 15 %. It can be decomposed into the
total sea ice extent difference between model and observa-
tions (absolute extent error, AEE) and the difference in sea
ice extent due to misplacement of sea ice (misplacement ex-
tent error, MEE). See Goessling et al. (2016) for further de-
tails.

Here, we also define an integrated ice area error (IIAE)
that describes the area of sea ice on which models and ob-
servations disagree. The ice area on which models and ob-
servations disagree is likely to be more physically relevant
than the area of grid cells on which models and observations
disagree. The IIAE is the sum of sea ice area overestimated
and underestimated,

IIAE=O +U (1)

with

O =

∫
A

max(cm− co,0)dA (2)

and

U =

∫
A

max(co− cm,0)dA, (3)

where A is the area of interest, cm is the simulated sea ice
concentration, and co is the observed sea ice concentration.

The integrated ice errors are useful as they quantify error
in integrated sea ice concentration values as well as quanti-
fying error caused by sea ice appearing in different grid cells

than the observations. This is in contrast to difference in sea
ice area, which accounts only for error in integrated sea ice
concentration values, and difference in sea ice extent, which
accounts only for error in the area of grid cells that have ice.
The integrated ice errors penalize underestimation and over-
estimation of sea ice equally.

In this study we also consider sea ice concentration dis-
tributions, as in Notz (2014) and Ivanova et al. (2016). The
sea ice concentration distribution for each model or obser-
vational product is calculated by binning grid cells accord-
ing to their concentration at a 10 % spacing. The distribution
is then normalized by the area of grid cells. We follow the
same calculation steps as Notz (2014). This metric allows us
to examine observed and modelled behaviour in different sea
ice concentration regimes. It does not penalize models whose
spatial distribution of sea ice disagrees with observations, but
it does allow us to quantify disagreement with observations
on sea ice concentration values while accounting for the ob-
servational range.

To look for behaviours which are consistent across all
CMIP5 models, we compare the population of all models for
the years 1992–2014 against the population of all observa-
tions for the same period. Including all models means that
the range is large when models show opposite tendencies;
using a multi-model mean would average out this informa-
tion. Including all months in each season for all years during
analysis captures sub-seasonal and inter-annual variability.

To quantify the agreement between two populations, we
use the two-sample Kolmogorov–Smirnov test. This com-
pares the empirical distribution functions of each sample, and
takes into account both the location and shape of the distri-
butions. In contrast, a Student’s t test would only examine
whether the means of the distributions agree. The p value
obtained from the Kolmogorov–Smirnov test represents the
confidence that the two populations come from the same dis-
tribution.

We found that sea ice concentration distributions show
some sensitivity to grid interpolation and therefore calculate
sea ice concentration distributions, as well as sea ice area,
on the native model and observation grids. The integrated ice
errors and differences in sea ice concentration fields between
models and observations must be calculated on the same grid.
In these cases, we follow Turner et al. (2013) and interpolate
model output and observational data on to a common grid us-
ing the bilinear remapping function from Climate Data Oper-
ators (CDO, 2015). For the CMIP5 integrated ice errors and
sea ice concentration differences, we choose a 1◦× 1◦ regu-
lar grid, which is a resolution equal to or higher than 20 of
the 40 models and lower than all observations. We consider it
to be an acceptable midpoint given the large range of model
resolutions.
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2.4 Coupled ocean–sea ice model

To understand the impact of model parametrizations for sea
ice thermodynamics, we carry out perturbed parameter sim-
ulations using a coupled ocean–sea ice model. This consists
of the ocean model NEMO and the sea ice model CICE5.1
forced with the atmospheric reanalysis JRA-55 (Japan Me-
teorological Agency, 2013), run on a 1◦ tripolar grid. CICE
is a state-of-the-art sea ice model and is used as the sea ice
component for several of the CMIP5 models (Table 1). Be-
low we briefly explain the model’s sea ice thermodynamics;
further details may be found in Hunke et al. (2015).

CICE describes the evolution of the ice thickness distri-
bution in five discrete categories. A volume of new sea ice
growth is calculated from the ocean freezing/melting poten-
tial Ffrz/mlt, with new ice added as area in the smallest thick-
ness category until the open water fraction is closed, after
which it grows existing ice thickness. For sea ice melt, the
net downward heat flux from the ice into the ocean, Fbot is

Fbot =−ρwcwchu∗ (Tw− Tf) , (4)

where ρw and cw are the density and heat capacity of sea
water, ch = 0.006 is the heat transfer coefficient, u∗ is the
friction velocity, Tw is the sea surface temperature and Tf
is the ocean freezing temperature, following Maykut and
McPhee (1995). The balance of this flux with a conductive
flux through the ice determines basal melt.

A fraction of ice is also melted laterally following Steele
(1992). If floes have a mean caliper diameter L, their perime-
ter is p = πL and their horizontal surface area is s = αL2

(where α ≈ 0.66 accounts for the non-circularity of floes
and was determined empirically by Rothrock and Thorndike,
1984). It is assumed that melting occurs uniformly at a rate
wlat around the perimeter of each floe, i.e.

ds
dt
= wlatp.

Therefore the change in diameter is

dL
dt
=
π

2α
wlat.

For a region containing n floes with only a single diameter
L, with a total horizontal area stot, the total concentration A
is

A=
n

stot
s(L)=

n

stot
αL2.

Hence, with stot and n constant in time and letting the sub-
script o denote the initial state,

A= Ao

(
L

Lo

)2

. (5)

Differentiating this and inserting dL/dt then gives the
change in concentration

dA
dt
=
Aπ

Lα
wlat. (6)

CICE uses a uniform lateral melt rate of

wlat =m1(Tw− Tf)
m2 , (7)

which was based on Josberger and Martin (1981), who found
a complex boundary layer adjacent to vertical ice walls melt-
ing in saltwater in the laboratory, with convective motions
following different flow regimes. The region adjacent to the
turbulent flow regime showed the largest lateral melt rate,
which could be fitted to the above relation. The coefficients
m1 and m2 are the best fit to data quoted by Maykut and Per-
ovich (1987), measured in a single static lead in the Canadian
Arctic archipelago over a 3-week period. In order to apply
Eq. (6), CICE assumes a single floe diameter of L= 300 m
throughout the ice pack. This is one of the more sophisticated
schemes for lateral melt in the CMIP5 models; often it is not
included at all (Table 1).

The experiments described below, which are performed
with the coupled NEMO-CICE model, begin in 1979 and end
in 2014. The years before 1992 are neglected to allow for
model spin-up. Time series of annual maximum sea ice ex-
tent show that this takes around 10 years to stabilize. Model
output from the NEMO-CICE experiments is analysed on
its native grid (1◦ tripolar). Comparisons between NEMO-
CICE simulations and observations (integrated ice errors and
sea ice concentration differences) are computed by interpo-
lating observations on to the same 1◦ tripolar grid using CDO
(2015).

3 Results

Figure 1 shows sea ice area at the annual maximum and mini-
mum from models and observations. Examining observations
and models shown individually (Fig. 1a and c), we find that
the interquartile range arising from inter-annual fluctuations
over 1992–2014 is generally smaller than inter-model differ-
ences.

Figure 1b and d group the models and observations into
two populations for comparison. At the annual maximum
(Fig. 1b), the interquartile range from the ensemble of ob-
servations for 1992–2014 is contained within the ensemble
of models from the same period, with the medians of the two
populations in good agreement. There is no clear model ten-
dency compared to observations for the sea ice area max-
imum. At the minimum (Fig. 1d), the interquartile ranges
from models and observations show less overlap than the
maximum, with the median from the model ensemble sig-
nificantly lower than the median from the observational en-
semble, suggesting a broadly consistent underestimation of
sea ice area at the annual minimum by the CMIP5 models.
This tendency was also noted by Turner et al. (2013) for
sea ice extent. There are outliers, which show an overestima-
tion of sea ice area, notably CSIRO-Mk-3-6-0 and the CESM
models. The Kolmogorov–Smirnov test quantitatively shows
that both the maximum and minimum sea ice area model–
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Figure 1. Sea ice area for the months where the maximum (a, b) and minimum (c, d) of the seasonal cycle occur. Populations include data
from all years from 1992 to 2014 with box plots for (a, c) the three observational products (ASI-SSMI, Bootstrap, and NASA Team) and all
CMIP5 models listed in Table 1 individually, and (b, d) for the ensemble of observational products and the CMIP5 model ensemble. Boxes
extend from the lower to upper quartile values of the data with a line at the median. Whiskers show 1.5 times the interquartile range; beyond
this data are considered outliers and plotted as individual points. The text labels in (b, d) is the p value calculated from a Kolmogorov–
Smirnov test, which represents the confidence that the two populations come from the same distribution.

observation comparisons are significantly different, but the
difference between models and observations is larger at the
summer minimum than at the winter maximum (Fig. 1b and
d).

The poorer performance of models at the summer mini-
mum is supported by the integrated ice area error (Fig. 2a).
The integrated ice area error has a model median value of
around 2 million km2 at the sea ice area minimum and around
5.5 million km2 at the sea ice area maximum, despite a much
larger amplitude in model mean sea ice area values (around
15 million and 1 million km2 respectively). Results are simi-
lar using the integrated ice extent error (Fig. 2b), although the
use of extent rather than area reduces the variation between
observational references. At the winter maximum, across the
population of CMIP5 models and different years, we find that

the absolute extent error and the misplacement extent error
contribute approximately equally to the total integrated ice
extent error (Fig. 2c–d). At the summer minimum, the inte-
grated ice extent errors for the CMIP5 models have a slightly
larger contribution from absolute extent errors than from mis-
placement area errors (Fig. 2c–d).

The large inter-model variability in extent and area at the
summer minimum can be seen in Fig. 3, where the sea ice
concentration fields show diverse behaviour. Variability be-
tween observational products is smaller than inter-model dif-
ferences, but observational differences are visible, particu-
larly at low concentrations. An objective way to quantify
model–observation disagreement is to use the integrated ice
area error, which describes the area of sea ice on which mod-
els and observations disagree. Due to observational variabil-
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Figure 2. Various ice errors for the population of CMIP5 models for all years from 1992 to 2014. Errors are shown relative to (red) the
ASI-SSMI satellite observations, (grey) the Bootstrap satellite observations, and (light blue) the NASA Team observations for the months
where the maximum and minimum of the seasonal cycle occur of sea ice area (a) or of sea ice extent (b, d) occur. The errors shown are the
integrated ice area error (a), the integrated ice extent error (b), the absolute extent error divided by the integrated extent error (c), and the
misplacement extent error divided by the integrated extent error (d). Box plots are as in Fig. 1.

ity, we calculate this relative to each observational product
individually. The variation in observations means that we
cannot rank the models in an overall order, but we can con-
struct two groups of well-performing models and of poorly
performing models whose members do not change when us-
ing different observational products. These are marked in
Fig. 3.

We now consider sea ice concentration distributions from
observations and models, which provide a more detailed as-
sessment than hemisphere-integrated measures. A normal-
ized sea ice concentration distribution may help isolate the
role of the sea ice component, as models with a constant tem-
perature bias in the atmosphere or ocean, resulting in a biased
sea ice area or extent, may still simulate the relative fraction
of different concentration regimes successfully.

As shown by Ivanova et al. (2016), the CMIP5 multi-
model mean and the NASA Team observations have a high
fraction of ice below 10 % sea ice concentration in the sum-
mer. We find that the fraction of 0.001–10 % concentration

ice varies in the models from 0.005 to 1.0 (when mod-
els are essentially ice-free) in the summer (Fig. 3). It con-
sists of up to around a third of the ice in other seasons
for some models. Including these very low concentrations
heavily skews the normalized sea ice concentration distribu-
tion towards low concentrations and it obscures behaviour
at higher concentrations. Our aim is to look for consistent
model behaviour, so to avoid the large variance between
different models and between different observations at very
low concentrations, we only consider sea ice concentrations
above 10 %. We present all months grouped by meteorologi-
cal season (December–February, DJF; March–May, MAM;
June–August, JJA; and September–November, SON). This
choice separates the melt season (September–February) from
the freezing season (March–August), while limiting the num-
ber of months included in each season.

We first describe satellite observations using the normal-
ized sea ice concentration distribution (Fig. 4). Here, indi-
vidual box plots contain both inter-annual and sub-seasonal
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Figure 3. Sea ice concentrations (above 0.1 %) for the three sets of observations (a–c) and the CMIP5 models (d–ar) for the month of
each model or observation’s sea ice area minimum, averaged over 1992–2014. Models marked with a bold (dashed) bounding box have
high-ranked (low-ranked) integrated ice area errors regardless of observational product used. Integrated ice area errors consider sea ice
concentrations > 15 % for the sea ice field shown.
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Figure 4. The normalized sea ice concentration distribution for all months in each year from 1992 to 2014 in (a) DJF, (b) MAM, (c) JJA,
and (d) SON from the three sets of satellite observations. Box plots as in Fig. 1.

variability, while the differences between box plots reflects
uncertainty arising from different processing of satellite data.
Differences between observational products are largest for
compact ice (90 %+) than other concentrations. In general,
the ASI-SSMI observations show more similar characteris-
tics to the Bootstrap observations than the NASA Team ob-
servations for most of the year, apart from DJF, where the
opposite is true. This results in a somewhat skewed distribu-
tion when considering an ensemble created from three data
sets. We find that the NASA Team algorithm shows a looser
ice cover, with a significantly lower proportion of cover in the
90 %+ concentration bin, than both the Bootstrap and ASI-
SSMI observations. This result holds when considering an
un-normalized sea ice concentration distribution as well (not

shown). The fraction in the 70–90 % bins is larger to compen-
sate. We also find that differences between data sets persists
throughout the year. This is in contrast to the Arctic, where
the frequency of compact sea ice cover shown in the Boot-
strap and NASA Team data sets shows largest disagreement
in the summer, due to issues with treatment of melt ponds
(Notz, 2014). In the Antarctic, observational uncertainty in
the frequency of compact sea ice is largest in winter.

Differences between the sea ice concentration distribution
from models and observations, including inter-annual and
sub-seasonal information (Fig. 5), are less distinct than be-
tween observational products themselves. This reflects the
large range in both models and observations due to sys-
tematic uncertainties. The overall decomposition from the
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Figure 5. The normalized sea ice concentration distribution for all months in each year from 1992 to 2014 in (a) DJF, (b) MAM, (c) JJA,
and (d) SON from the three sets of satellite observations (blue) and the 40 CMIP5 models (green). Box plots as in Fig. 1. Annotated text
is the p value calculated from a Kolmogorov–Smirnov test, which represents the confidence that the two populations come from the same
distribution.

CMIP5 models, with a large fraction of compact ice cover
and smaller fractions of lower concentrations is somewhat
in agreement with observations. Agreement appears poorest
in DJF, where the lower to upper quartile range for 90 %+
sea ice concentration from models and observations overlap

very little. Models strongly underestimate the fraction of sea
ice area with concentration greater than 90 %, that is, their
central ice pack is not compact enough. They tend to over-
estimate the fraction in the 80–90 % bin and at lower con-
centrations to compensate. In other seasons, there appears to
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be a slight tendency to overestimate the fraction of compact
(90 %+) ice, with a reduction in the 70–90 % bins to com-
pensate. The two-sample Kolmogorov–Smirnov test can be
used to quantify the degree of disagreement between models
and observations. The confidence level that the ensemble of
observations and ensemble of models were drawn from the
same population has the smallest values for the 90–100 and
10–20 % in DJF, the 70–90 % concentrations in MAM, the
10–30 % concentrations in JJA, and the 80–90 and 10–20 %
concentrations in SON. There is a tendency for models to
overestimate the fraction of low-concentration (10–20 %) sea
ice in all seasons. This overestimation of< 20 % sea ice com-
pared to observations is robust when considering sea ice con-
centration bins spaced at 5 % intervals and beginning at 15 %,
the cut-off used universally for sea ice extent (not shown).
Unlike the other CMIP5 model tendencies, the overestima-
tion of 10–20 % ice occurs in every month (Fig. 6), with the
CMIP5 model median always outside the interquartile range
of the observations.

As discussed above, this assessment takes into account
observational uncertainty and inter-annual and sub-seasonal
variability. That distinct tendencies arise from a population
of 40 models, which contain diverse physics and different
sea ice, ocean, and atmosphere models, is striking. It sug-
gests that there is some deficiency or missing physical pro-
cess common to many models.

A plausible explanation could be that models form sea
ice that is too thin in the highest bin, which therefore melts
more easily. Conversely, low-concentration sea ice may be
too thick. However, we found no relation between these con-
centration biases and average sea ice thickness for the low-
est and highest concentration bins (not shown). We therefore
turn to lateral, rather than vertical, thermodynamics in the
next section.

4 Impact of floe size

We hypothesize that the biases in low-concentration Antarc-
tic sea ice are partially influenced by lateral floe size. Lateral
floe size impacts sea ice concentration through lateral melt
only if included at all in the CMIP5 models (see Table 1).
Separating models with and without an explicit lateral melt
term (Table 1), we find a significant difference between the
two groups. Models with explicit lateral melt show a greatly
reduced fraction of low-concentration ice in from March to
July compared to models without, in good agreement with
the observations (Fig. 7). Lateral melt can occur all year at
the ice edge, where low concentrations occur.

Figure 7 demonstrates that lateral melt significantly im-
pacts the normalized sea ice concentration distribution dur-
ing autumn. However, lateral melt as it is currently included
in CMIP5 models still results in a tendency towards overes-
timation of low-concentration sea ice in other months, and
some models with an explicit lateral melt term (including the

Figure 6. The 10–20 % bin from the normalized sea ice concentra-
tion distribution for each month, where boxes contain all years from
1992 to 2014 from (blue) the three sets of satellite observations and
(green) the 40 CMIP5 models. Box plots as in Fig. 1. Annotated text
is the p value calculated from a Kolmogorov–Smirnov test, which
represents the confidence that the two populations come from the
same distribution.

ocean–sea ice model NEMO-CICE) still simulate too large
a fraction of loose ice.

We therefore proceed by examining whether changes to
the lateral melt scheme may also impact the simulation of sea
ice. The current representation of lateral melt in CMIP5 mod-
els is heavily parametrized (Table 1), with the formulation
described in Sect. 2.4 being the most complex parametriza-
tion available in the CMIP5 models. Tsamados et al. (2015)
showed that a more advanced concentration-dependent lat-
eral melt parametrization significantly impacted the decom-
position of sea ice melt processes, resulting in reduced sea
ice concentrations around the ice edge in the Arctic. In the
Antarctic, heat flux from solar heating of open water areas
has been cited as the major cause of sea ice decay (Nihashi
and Ohshima, 2001), with this melting potential available for
both lateral and bottom melt. Recent studies have also sug-
gested that floe size should also impact sea ice concentra-
tion through processes such as floe–floe collisions and lateral
growth (Horvat and Tziperman, 2015; Zhang et al., 2015).

As shown in Sect. 2.4, in CICE the lateral melt flux is
independent of floe size, while the change in concentration
arising from lateral melt is inversely proportional to a con-
stant floe diameter, D = 300 m. In reality, sea ice floes can
range in size across orders of magnitude. Several observa-
tional studies (e.g. Steer et al., 2008; Paget et al., 2001) find
that the number distribution of floe sizes per unit area follows
a power law with a negative exponent, suggesting that there
can be a large number of small floes.

While concentration is not a proxy for floe size, in general
we may expect that low-concentration areas will be made up
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Figure 7. The 10–20 % bin from the normalized sea ice concentration distribution for each month, where boxes contain all years from 1992
to 2014 from (blue) the three sets of satellite observations, (purple) CMIP5 models that include an explicit lateral melt term, and (grey)
CMIP5 models that do not (from Table 1). Box plots as in Fig. 1. Annotated text is the p value calculated from a Kolmogorov–Smirnov test,
which represents the confidence that the two populations come from the same distribution.

of smaller sea ice floes than high-concentration areas because
they are usually nearer the ice edge. An area of smaller sea
ice floes will experience more lateral melt than an area with
a larger floe size (Eq. 6). We therefore suggest that CMIP5
models using the Steele (1992) lateral melt parametrization
simulate too much low-concentration sea ice because this is
made up of floes smaller than 300 m and so should be subject
to more lateral melt. In areas around the ice edge, which are
principally low-concentration, marginal ice zone processes
not included in CMIP5 models, such as wave fracture and dy-
namic floe interactions, may further reduce concentrations.
Conversely, in high-concentration areas, floes are likely to be
larger than 300 m and therefore should be subject to less lat-
eral melt than the Steele (1992) parametrization prescribes.
This could explain the underestimation of high-concentration
sea ice seen in Antarctic summer.

In order to test this hypothesis, we perform three ex-
periments using the coupled ocean–sea ice model (NEMO-
CICE) described in Sect. 2.4. The experiments have iden-
tical set ups apart from a variation in L, the fixed floe di-
ameter. We run experiments using (i) the standard value of
L= 300 m, (ii) a low value of L= 1 m, and (iii) a high value
of L= 10000 m. Our perturbed parameter values are con-
stant and not realistic, but instead are chosen to investigate
and highlight the impact of extreme changes.

Figure 8 shows the fraction of 10–20 % sea ice concen-
tration from observations, the standard NEMO-CICE model
and the model with reduced floe size. The standard model has
very strong overestimation of low-concentration ice through
December to March compared to observations. Impact of re-
duced floe size on the distribution is limited, with the excep-
tion of February, where there is a very strong reduction in the

fraction of 10–20 % concentration ice, bringing it into better
agreement with observations.

The enhanced lateral melt achieved by reducing floe size
results in statistically significant reductions in sea ice con-
centration relative to the standard model in DJF (Fig. 9b).
December, January, and February stand out from the other
months in having particularly high total lateral melt rates.
As expected from Fig. 6, enhanced lateral melt reduces the
high bias in concentration near the outer ice edge compared
to Bootstrap observations in DJF (reduction in blue, Fig. 9d
and e), but enhances the low bias compared to the Bootstrap
observations elsewhere (increase in red, Fig. 9d and e). We
use the integrated ice extent error described above to quan-
tify agreement with the Bootstrap observations. The same
qualitative picture is obtained from all three observational
products. We find that the difference in overall agreement
with observations between the standard model and the small
floe simulation is negligible. The absolute extent error signif-
icantly increases in the small floe simulation, because overall
this simulation melts too much ice compared to observations.
The misplacement extent error, however, is significantly re-
duced in the small floe simulation. This is partly because
there is less ice to be misplaced, but also because increased
lateral melt improves the distribution of sea ice around the ice
edge, by melting areas where there is too much ice compared
to observations (Fig. 9d and e).

Besides lateral melt, a number of other physical processes,
including dynamical ones, may also contribute to an over-
estimation of low-concentration ice. Lecomte et al. (2016)
find systematic wind-driven biases in sea ice drift speed and
direction at the exterior of the Antarctic ice pack. Errors in
surface winds could contribute to poor simulation of low-
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Figure 8. The 10–20 % bin from the normalized sea ice concentration distribution for each month, where boxes contain all years from 1992
to 2014 from a NEMO-CICE simulation with (blue) the three sets of satellite observations, (light blue) a floe diameter of 300 m (the standard
model), and (orange) a floe diameter of 1 m. Box plots as in Fig. 1. Annotated text is the p value calculated from a Kolmogorov–Smirnov
test, which represents the confidence that the two populations come from the same distribution.

Figure 9. Sea ice concentration averaged over DJF 1992–2014 for (a) the standard model simulation with a floe diameter of 300 m; (b)
a model simulation with a floe diameter of 1 m (small floes) minus (a); and (c) a model simulation with a floe diameter of 10 000 m (large
floes) minus (a). Panels (d–f) show simulation minus observed Bootstrap sea ice concentration, where the latter has been interpolated on to
the model grid for (d) the standard model simulation, (e) the small floes simulation, and (d) the large floes simulation. In (b–f), differences
are shown only if they are statistically different according to a Student’s t test over 1992–2014 (p < 5 %). Labels on (d–f) show the integrated
ice extent error, absolute extent error and misplacement extent error in million km2.

concentration sea ice. However, we find a very strong over-
estimation in low-concentration sea ice in the NEMO-CICE
model, which is forced by a reanalysis atmosphere and so
should not have very unrealistic winds. The dynamical re-

sponse of sea ice to winds at the edge of the ice may be poorly
represented, as we would expect sea ice dynamics to be floe-
size dependent. Alternative rheologies (such as a granular
rheology, e.g. Feltham, 2005) may be better suited to this

www.the-cryosphere.net/12/365/2018/ The Cryosphere, 12, 365–383, 2018



378 L. A. Roach et al.: Consistent biases in Antarctic sea ice concentration simulated by climate models

domain. Concentrations could also be reduced by mechani-
cal interactions between floes. However, we cannot test the
impact of such floe-size-dependent processes without access
to sea ice models that include them.

The impact of increased floe size, on the other hand, is
much smaller (Fig. 9c and f). Differences in sea ice concen-
tration between the standard model and the large floe simula-
tion are barely perceptible. Changes in the ice errors relative
to the standard model are of the opposite sign compared to
the small floe simulation, but these changes are unlikely to
be significant. Examining the basal and lateral melt rates, we
find that the hemispheric average DJF 1992–2014 mean lat-
eral melt rate accounts for only 5 % of the combined basal
and lateral melt rates in the standard model. It accounts for
a larger proportion (17 %) of melt in the Arctic. Decreasing
floe diameter by 2 orders of magnitude increases the lateral
melt rate to 83 % of the combined basal and lateral melt. This
compensation effect of reduced basal melt when lateral melt
is increased was also noted by Tsamados et al. (2015) in the
Arctic. On the other hand, increasing the floe diameter by
2 orders of magnitude effectively switches off lateral melt
(0.2 % of combined basal and lateral melt). In the latter case,
more melting potential is made available for basal melting,
which, because Antarctic sea ice is so thin, has the same im-
pact on sea ice concentration as lateral melt. We conclude
that there must be alternative reasons for the consistent un-
derestimation of compact summer ice.

Looking at the regional distribution of DJF (the season
where the bias is apparent in Fig. 5) seasonal mean sea ice
concentration averaged over 1992–2014, high-concentration
(90–100 %) ice appears in the observations mean only in the
Weddell Sea (Fig. 3). Taking the difference between the high-
concentration ice in each observational product and the sea
ice concentration in the CMIP5 model simulations shows that
very few of the models simulate high enough concentrations
in this area. Figure 10 shows the difference between the ASI-
SSMI observations and the CMIP5 models; differences are
slightly enhanced using Bootstrap and less pronounced when
using NASA Team. This demonstrates a consistent model
tendency to underestimate concentrations in the Weddell Sea,
the largest region of multi-year ice in Antarctica. The bias is
not present in other seasons, suggesting it is related to overes-
timated melt or break-up processes, including misrepresenta-
tion of sea ice dynamics.

Overestimated melt or break-up could be a result of the
sea ice model or a biased warm atmosphere or ocean. While
consideration of normalized sea ice concentration distribu-
tion is intended to remove overall biases caused by (for ex-
ample) a warm ocean, in summer the warm ocean could
shift the whole distribution to lower concentrations. Alter-
natively, or likely in conjunction with this, regionally impor-
tant processes may be being misrepresented. Evaluating the
ORCA2-LIM coupled ocean–sea ice model, Timmermann
et al. (2004) found that overestimation of westerly winds led
to an underestimation of sea ice coverage on the eastern side

of the Antarctic peninsula, in the Weddell Sea. Other CMIP5
models may simulate high drift speeds due to winds or sea
ice rheology, which Lecomte et al. (2016) found correlated
with a faster sea ice retreat.

5 Discussion

In this study, we examine the distribution of sea ice con-
centration from both models and observations. Firstly, we
show that observed sea ice concentration values can differ
significantly between three widely used algorithms for satel-
lite data. This observational uncertainty provides a limit be-
yond which we cannot further evaluate model agreement
with observations. Many sea ice model–observation compar-
isons use only one satellite data set assumed to represent
the true observed state, an approach which may be sufficient
when using sea ice extent, a metric where the various al-
gorithms broadly agree. However, when using metrics that
go beyond sea ice extent, using for example sea ice area or
sea ice concentration distributions, model evaluation studies
should account for the observational range.

We find that simulation of high-concentration (90 %+) sea
ice in models is in better agreement with the NASA Team
observations than the observational range including the Boot-
strap and ASI-SSMI observations, in agreement with Ivanova
et al. (2016), who only examined the CMIP5 multi-model
mean.

Accounting for the range in three observational prod-
ucts, we find that models overestimate the extent of low-
concentration sea ice throughout the year, while underesti-
mating the extent of high-concentration sea ice in summer.
This common behaviour across diverse models with varying
physics is a result not previously highlighted and warrants
further attention.

We note that using the observational range as an uncer-
tainty estimate neglects biases that are common to the three
different satellite observations. As mentioned above, sea ice
concentrations are considered to be most uncertain during
melt conditions, for large fractions of thin ice and at low con-
centrations during storms. In the context of the results from
the model–observation comparison for normalized sea ice
concentration distributions, we suggest that the impact of un-
certainty of melt conditions is limited as the high bias in low-
concentration ice from CMIP5 models is visible throughout
the year. The low bias in high-concentration ice during the
melt season would be strengthened if observations were un-
derestimating ice concentrations in this season. Inclusion of
both NASA Team and Bootstrap algorithms, with the former
tending to cancel out physical temperature effects, will sam-
ple some of this uncertainty.

The underestimation of sea ice concentrations in areas of
thin ice (< 35 cm) (Ivanova et al., 2015) may cause a bias
at any concentration in the observed normalized sea ice con-
centration distribution from observations, with the possibility
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Figure 10. Simulation minus observed ASI-SSMI sea ice concentration for DJF 1992–2014 for each CMIP5 model, where only grid cells with
observational mean sea ice concentration is ≥ 90 % are considered. Differences are only shown if they are statistically different according to
a Student’s t test over 1992–2014 (p < 5 %).

www.the-cryosphere.net/12/365/2018/ The Cryosphere, 12, 365–383, 2018



380 L. A. Roach et al.: Consistent biases in Antarctic sea ice concentration simulated by climate models

of a positive bias in the very lowest concentrations. Stormy
conditions near the ice edge lead to false sea ice concentra-
tions near the ice edge; weather filters may accurately remove
these, leave them uncorrected (Andersen et al., 2006), or er-
roneously remove real sea ice. The latter may underestimate
low concentrations. Spreen et al. (2008) suggest the filter
method used in ASI-SSMI observations may result in a posi-
tive bias in the marginal ice zone, and Steffen and Schweiger
(1991) found that the NASA Team algorithm overestimates
low-concentration ice when compared to Landsat imagery.
Considering all this evidence we suggest that the magnitude
or sign of any systematic biases in satellite radiometer ob-
servations is unclear when comparing with climate models.
This is particularly true for low concentrations. Here the use
of different approaches to weather filters within the different
algorithms may assist in sampling observational uncertainty.
Development of sea ice satellite emulators, which use cli-
mate model output to calculate brightness temperatures (e.g.
Tonboe et al., 2011), may help to reduce uncertainty when
comparing models to observations in the future.

Categorizing models according to whether they explicitly
represent lateral melting, which is the only thermodynamic
sea ice process that reduces concentrations in models regard-
less of sea ice thickness, we find a strong impact of this pro-
cess on low-concentration sea ice. In Sect. 2.4 we briefly re-
view typical sea ice model thermodynamics, and in particu-
lar the change in concentration induced by lateral melt rate
for a region containing floes of a single diameter, which fol-
lows Steele (1992). Horvat et al. (2016) finds that develop-
ment of ocean eddies due to lateral density gradients could
induce much larger lateral melt than that suggested from the
Steele (1992) geometric model. This would support increas-
ing the lateral melt rate in models, as we have done artifi-
cially here through a reduced constant floe size. Heat budget
analysis (Nihashi and Ohshima, 2001) and modelling studies
(Fichefet and Maqueda, 1997; Ohshima and Nihashi, 2005)
suggest that the major cause of Antarctic sea ice decay is
atmospheric heat input to open water, which causes bottom
and lateral melt. Fichefet and Maqueda (1997) find that sea
ice melt by open water plays a larger role in the Antarctic
than in the Arctic. We further note that the coefficients in the
lateral melt rate used in CICE were measured in the Arctic
only (Maykut and Perovich, 1987) and few, if any, observa-
tional studies exist on the relative importance of bottom and
lateral melt in the Antarctic.

The impacts of enhancing lateral melt via reducing a con-
stant floe size shown here suggest that this process should not
be applied in the same way throughout the ice pack. While
not all models include such a lateral melt parametrization,
the biases at the tails of the concentration distributions from
the CMIP5 models point to inclusion of model processes
that are not suitable for both high-concentration and low-
concentration regimes. A possible conclusion, therefore, is
that physics in sea ice models are not heterogeneous enough
to represent observed sea ice cover. Given the possible con-

tribution of dynamic processes to model biases in the sea ice
concentration distribution, a full exploration of sea ice dy-
namics for all CMIP5 models using the sea ice concentration
budget decomposition of Uotila et al. (2014) would be wel-
come. Including information on the floe size distribution and
floe size dependent processes (e.g. Horvat and Tziperman,
2015; Zhang et al., 2016; Bennetts et al., 2017) could im-
prove consistency with observations in the metrics presented
here.
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