Articles | Volume 12, issue 11
The Cryosphere, 12, 3617–3633, 2018
The Cryosphere, 12, 3617–3633, 2018
Research article
22 Nov 2018
Research article | 22 Nov 2018

Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys

Daniel McGrath et al.

Related authors

Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314,,, 2022
Short summary
Centuries of intense surface melt on Larsen C Ice Shelf
Suzanne L. Bevan, Adrian Luckman, Bryn Hubbard, Bernd Kulessa, David Ashmore, Peter Kuipers Munneke, Martin O'Leary, Adam Booth, Heidi Sevestre, and Daniel McGrath
The Cryosphere, 11, 2743–2753,,, 2017
Short summary
Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426,,, 2017
Short summary

Related subject area

Discipline: Glaciers | Subject: Mass Balance Obs
Characteristics of mountain glaciers in the northern Japanese Alps
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere, 16, 1091–1106,,, 2022
Short summary
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040,,, 2021
Short summary
Recent contrasting behaviour of mountain glaciers across the European High Arctic revealed by ArcticDEM data
Jakub Małecki
The Cryosphere Discuss.,,, 2021
Revised manuscript accepted for TC
Short summary
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276,,, 2021
Short summary
Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains
Feiteng Wang, Xiaoying Yue, Lin Wang, Huilin Li, Zhencai Du, Jing Ming, and Zhongqin Li
The Cryosphere, 14, 2597–2606,,, 2020
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Contr., AC-19(6), 716–723, 1974. 
Anderson, B. T., McNamara, J. P., Marshal, H. P., and Flores, A. N.: Insights into the physical processes controlling correlations between snow distribution and terrain properties, Water Res. Res., 50, 4545–4563,, 2014. 
Bauder, A. (Ed.): The Swis Glaciers, 2013/14 and 2014/15, Glaciological Report (Glacier) No. 135/136,, 2017. 
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594,, 2018. 
Balk, B. and Elder, K.: Combining binary regression tree and geostatistical methods to estimate snow distribution in a mountain watershed, Water Res. Res., 36, 13–26, 2000. 
Short summary
Measuring the amount and spatial pattern of snow on glaciers is essential for monitoring glacier mass balance and quantifying the water budget of glacierized basins. Using repeat radar surveys for 5 consecutive years, we found that the spatial pattern in snow distribution is stable over the majority of the glacier and scales with the glacier-wide average. Our findings support the use of sparse stake networks for effectively measuring interannual variability in winter balance on glaciers.