Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-25-2018
https://doi.org/10.5194/tc-12-25-2018
Research article
 | 
08 Jan 2018
Research article |  | 08 Jan 2018

Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

David W. Rees Jones and Andrew J. Wells

Related subject area

Sea Ice
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023,https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Analysis of micro-seismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-212,https://doi.org/10.5194/tc-2022-212, 2022
Revised manuscript accepted for TC
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1122,https://doi.org/10.5194/egusphere-2022-1122, 2022
Short summary
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022,https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary

Cited articles

Bonnecaze, R. T., Huppert, H. E., and Lister, J. R.: Particle-driven gravity currents, J. Fluid Mech., 250, 339–369, https://doi.org/10.1017/S002211209300148X, 1993. a
Carstens, T.: Experiments with supercooling and ice formation in flowing water, Geofys. Publ. Norway, 26, 3–18, 1966. a, b, c
Daly, S. F.: Frazil ice dynamics, CRREL Monograph, 84, 46 pp., 1984. a, b, c, d, e, f
Daly, S. F.: Report on frazil ice, Tech. Rep. 94-23, USA Cold Regions Research and Engineering Laboratory, CRREL Special Report, Hanover, New Hampshire, USA, 1994. a
Engelhardt, H. and Determann, J.: Borehole evidence for a thick layer of basal ice in the central Ronne Ice Shelf, Nature, 327, 318–319, https://doi.org/10.1038/327318a0, 1987. a
Download
Short summary
Frazil or granular ice grows rapidly from turbulent water cooled beneath its freezing temperature. We analyse numerical models of a population of ice crystals to provide insight into the treatment of frazil ice in large-scale models and hence in the environment. We determine critical conditions for explosively rapid frazil growth. We show that frazil-ice processes impact whether a plume of ice shelf water beneath an Antarctic ice shelf intrudes at depth or reaches the end of the shelf.