Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-189-2018
https://doi.org/10.5194/tc-12-189-2018
Research article
 | 
19 Jan 2018
Research article |  | 19 Jan 2018

Modelling debris transport within glaciers by advection in a full-Stokes ice flow model

Anna Wirbel, Alexander H. Jarosch, and Lindsey Nicholson

Related authors

Particle and front tracking in experimental and computational avalanche dynamics
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164,https://doi.org/10.5194/nhess-2024-164, 2024
Revised manuscript under review for NHESS
Short summary
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023,https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary

Related subject area

Numerical Modelling
Sea level rise contribution from Ryder Glacier in northern Greenland varies by an order of magnitude by 2300 depending on future emissions
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025,https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Calibrated sea level contribution from the Amundsen Sea sector, West Antarctica, under RCP8.5 and Paris 2C scenarios
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
The Cryosphere, 19, 2527–2557, https://doi.org/10.5194/tc-19-2527-2025,https://doi.org/10.5194/tc-19-2527-2025, 2025
Short summary
Calving driven by horizontal forces in a revised crevasse-depth framework
Donald A. Slater and Till J. W. Wagner
The Cryosphere, 19, 2475–2493, https://doi.org/10.5194/tc-19-2475-2025,https://doi.org/10.5194/tc-19-2475-2025, 2025
Short summary
The demise of the world's largest piedmont glacier: a probabilistic forecast
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025,https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary
Improved basal drag of the West Antarctic Ice Sheet from L-curve analysis of inverse models utilizing subglacial hydrology simulations
Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert
The Cryosphere, 19, 2133–2158, https://doi.org/10.5194/tc-19-2133-2025,https://doi.org/10.5194/tc-19-2133-2025, 2025
Short summary

Cited articles

Ackert Jr., R. P.: A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming, Geogr. Ann. A, 80, 267–276, https://doi.org/10.1111/j.0435-3676.1998.00042.x, 1998.
Alnæs, M. S.: UFL: a finite element form language, in: Automated Solution of Differential Equations by the Finite Element Method, vol. 84, Lecture Notes in Computational Science and Engineering, edited by: Logg, A., Mardal, K.-A., and Wells, G. N., chap. 17, Springer, 2012.
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations, ACM T. Math. Software, 40, 9, https://doi.org/10.1145/2566630, 2014.
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project Version 1.5, Arch. Numerical Softw., 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553, 2015.
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016.
Download
Short summary
As debris cover affects the meltwater production and behaviour of glaciers it is important to understand how, and over what timescales, it forms. Here we develop an advanced 3-D numerical model that describes transport of sediment through a glacier to the point where it emerges at the surface. The numerical performance of the model is satisfactory and it reproduces debris structures observed within real-world glaciers, thereby offering a useful tool for future studies of debris-covered glaciers.
Share