Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-1013-2018
https://doi.org/10.5194/tc-12-1013-2018
Research article
 | 
22 Mar 2018
Research article |  | 22 Mar 2018

A network model for characterizing brine channels in sea ice

Ross M. Lieblappen, Deip D. Kumar, Scott D. Pauls, and Rachel W. Obbard

Related authors

Physical and optical characteristics of heavily melted “rotten” Arctic sea ice
Carie M. Frantz, Bonnie Light, Samuel M. Farley, Shelly Carpenter, Ross Lieblappen, Zoe Courville, Mónica V. Orellana, and Karen Junge
The Cryosphere, 13, 775–793, https://doi.org/10.5194/tc-13-775-2019,https://doi.org/10.5194/tc-13-775-2019, 2019
Short summary
The role of blowing snow in the activation of bromine over first-year Antarctic sea ice
R. M. Lieb-Lappen and R. W. Obbard
Atmos. Chem. Phys., 15, 7537–7545, https://doi.org/10.5194/acp-15-7537-2015,https://doi.org/10.5194/acp-15-7537-2015, 2015
Short summary

Related subject area

Sea Ice
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023,https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary

Cited articles

Berkowitz, B. and Balberg, I.: Percolation Approach to the Problem of Hydraulic Conductivity in Porous Media, Transport Porous Med., 9, 275–286, 1992. a
Cox, G. F. N. and Weeks, W. F.: Brine Drainage and Initial Salt Entrapment in Sodium Chloride Ice, Tech. Rep. Research Report 345, CRREL, Hanover, NH, 1975. a
Cox, G. F. N. and Weeks, W. F.: Equations for Determining the Gas and Brine Volumes In Sea-Ice Samples, J. Glaciol., 29, 306–316, 1983. a, b
Delerue, J. F., Perrier, E., Timmerman, A., and Swennen, R.: 3D Soil Image Characterization Applied to Hydraulic Properties Computation, in: Applications of X-ray Computed Tomography in the Geosciences, edited by: Mees, F., Swennen, R., Van Geet, M., and Jacobs, P., Geological Society Special Publications, London, 215, 167–175, 2003. a
Dijkstra, E. W.: A Note on Two Problems in Connexion with Graphs, Numerische Mathematik, 1, 269–271, 1959. a
Download
Short summary
We imaged first-year sea ice using micro-computed tomography to visualize, capture, and quantify the 3-D complex structure of salt water channels weaving through sea ice. From these data, we then built a mathematical network to better understand the pathways transporting heat, gases, and salts between the ocean and the atmosphere. Powered with this structural knowledge, we can create new modeled brine channels for a given sea ice depth and temperature that accurately mimic field conditions.