Articles | Volume 12, issue 3
The Cryosphere, 12, 1013–1026, 2018
https://doi.org/10.5194/tc-12-1013-2018
The Cryosphere, 12, 1013–1026, 2018
https://doi.org/10.5194/tc-12-1013-2018

Research article 22 Mar 2018

Research article | 22 Mar 2018

A network model for characterizing brine channels in sea ice

Ross M. Lieblappen et al.

Related authors

Physical and optical characteristics of heavily melted “rotten” Arctic sea ice
Carie M. Frantz, Bonnie Light, Samuel M. Farley, Shelly Carpenter, Ross Lieblappen, Zoe Courville, Mónica V. Orellana, and Karen Junge
The Cryosphere, 13, 775–793, https://doi.org/10.5194/tc-13-775-2019,https://doi.org/10.5194/tc-13-775-2019, 2019
Short summary
The role of blowing snow in the activation of bromine over first-year Antarctic sea ice
R. M. Lieb-Lappen and R. W. Obbard
Atmos. Chem. Phys., 15, 7537–7545, https://doi.org/10.5194/acp-15-7537-2015,https://doi.org/10.5194/acp-15-7537-2015, 2015
Short summary

Related subject area

Sea Ice
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020,https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020,https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, and Alvaro Ivanoff
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-174,https://doi.org/10.5194/tc-2020-174, 2020
Revised manuscript accepted for TC
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020,https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Modeling the annual cycle of daily Antarctic sea ice extent
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020,https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary

Cited articles

Berkowitz, B. and Balberg, I.: Percolation Approach to the Problem of Hydraulic Conductivity in Porous Media, Transport Porous Med., 9, 275–286, 1992. a
Cox, G. F. N. and Weeks, W. F.: Brine Drainage and Initial Salt Entrapment in Sodium Chloride Ice, Tech. Rep. Research Report 345, CRREL, Hanover, NH, 1975. a
Cox, G. F. N. and Weeks, W. F.: Equations for Determining the Gas and Brine Volumes In Sea-Ice Samples, J. Glaciol., 29, 306–316, 1983. a, b
Delerue, J. F., Perrier, E., Timmerman, A., and Swennen, R.: 3D Soil Image Characterization Applied to Hydraulic Properties Computation, in: Applications of X-ray Computed Tomography in the Geosciences, edited by: Mees, F., Swennen, R., Van Geet, M., and Jacobs, P., Geological Society Special Publications, London, 215, 167–175, 2003. a
Dijkstra, E. W.: A Note on Two Problems in Connexion with Graphs, Numerische Mathematik, 1, 269–271, 1959. a
Download
Short summary
We imaged first-year sea ice using micro-computed tomography to visualize, capture, and quantify the 3-D complex structure of salt water channels weaving through sea ice. From these data, we then built a mathematical network to better understand the pathways transporting heat, gases, and salts between the ocean and the atmosphere. Powered with this structural knowledge, we can create new modeled brine channels for a given sea ice depth and temperature that accurately mimic field conditions.