Articles | Volume 11, issue 4
The Cryosphere, 11, 1537–1552, 2017
https://doi.org/10.5194/tc-11-1537-2017
The Cryosphere, 11, 1537–1552, 2017
https://doi.org/10.5194/tc-11-1537-2017

Research article 04 Jul 2017

Research article | 04 Jul 2017

A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica

Franciele Schwanck et al.

Related authors

Enhanced moisture delivery into Victoria Land, East Antarctica, during the early Last Interglacial: implications for West Antarctic Ice Sheet stability
Yuzhen Yan, Nicole E. Spaulding, Michael L. Bender, Edward J. Brook, John A. Higgins, Andrei V. Kurbatov, and Paul A. Mayewski
Clim. Past, 17, 1841–1855, https://doi.org/10.5194/cp-17-1841-2021,https://doi.org/10.5194/cp-17-1841-2021, 2021
Short summary
Relationships between Andean Glacier Ice-Core Dust Records and Amazon Basin Riverine Sediments
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186,https://doi.org/10.5194/tc-2021-186, 2021
Preprint under review for TC
Short summary
Reconstruction of annual accumulation rate on firn, synchronising H2O2 concentration data with an estimated temperature record
Jandyr M. Travassos, Saulo S. Martins, Mariusz Potocki, and Jefferson C. Simões
The Cryosphere, 15, 3495–3505, https://doi.org/10.5194/tc-15-3495-2021,https://doi.org/10.5194/tc-15-3495-2021, 2021
Short summary
A new method of resolving annual precipitation for the past millennia from Tibetan ice cores
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-115,https://doi.org/10.5194/tc-2021-115, 2021
Preprint under review for TC
Short summary
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021,https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary

Related subject area

Ice Cores
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021,https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021,https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021,https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021,https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021,https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary

Cited articles

Albani, S., Mahowald, N. M., Delmonte, B., Maggi, V., and Winckler, G: Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates, Clim. Dynam., 38, 1731–1755, 2012.
Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.: Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, 2009.
Becagli, S., Proposito, M., Benassai, S., Gragnani, R., Magand, O., Traversi, R., and Udisti, R.: Spatial distribution of biogenic sulphur compounds (MSA, nssSO42−) in the northern Victoria Land-Dome C-Wilkes Land area, East Antarctica, Ann. Glaciol., 41, 23–31, 2005.
Bory, A., Wolff, E., Mulvaney, R., Jagoutz, E., Wegner, A., Ruth, U., and Elderfield, H.: Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet, Earth Planet. Sc. Lett., 291, 138–148, 2010.
Boutron, C. F. and Patterson, C. C.: Lead concentration changes in Antarctic ice during the Wisconsin/Holocene transition, Nature, 323, 222–225, 1986.
Download
Short summary
The West Antarctic Ice Sheet (WAIS) is more susceptible to marine influences than the East Antarctica Ice Sheet (EAIS). During recent decades, rapid changes have occurred in the WAIS sector, including flow velocity acceleration, retraction of ice streams, and mass loss. In this study, we use an ice core located near the Pine Island Glacier ice divide to reconstruct mineral dust and marine aerosol transport and the influence of climate variables on the elemental concentration.