Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1141-2017
https://doi.org/10.5194/tc-11-1141-2017
Research article
 | 
08 May 2017
Research article |  | 08 May 2017

Could promontories have restricted sea-glacier penetration into marine embayments during Snowball Earth events?

Adam J. Campbell, Betzalel Massarano, Edwin D. Waddington, and Stephen G. Warren

Related authors

The influence of ocean waves on Antarctic sea-ice albedo and seasonal melting, and physical-biological feedbacks
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166,https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Effective diffusivity of sulfuric acid in Antarctic ice cores
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024,https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022,https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
The Community Firn Model (CFM) v1.0
C. Max Stevens, Vincent Verjans, Jessica M. D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020,https://doi.org/10.5194/gmd-13-4355-2020, 2020
Short summary
Advection and non-climate impacts on the South Pole Ice Core
Tyler J. Fudge, David A. Lilien, Michelle Koutnik, Howard Conway, C. Max Stevens, Edwin D. Waddington, Eric J. Steig, Andrew J. Schauer, and Nicholas Holschuh
Clim. Past, 16, 819–832, https://doi.org/10.5194/cp-16-819-2020,https://doi.org/10.5194/cp-16-819-2020, 2020
Short summary

Related subject area

Ice Physics
Anisotropic scattering in radio-echo sounding: insights from northeast Greenland
Tamara Annina Gerber, David A. Lilien, Niels F. Nymand, Daniel Steinhage, Olaf Eisen, and Dorthe Dahl-Jensen
The Cryosphere, 19, 1955–1971, https://doi.org/10.5194/tc-19-1955-2025,https://doi.org/10.5194/tc-19-1955-2025, 2025
Short summary
Evolution of crystallographic preferred orientations of ice sheared to high strains by equal-channel angular pressing
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
The Cryosphere, 19, 827–848, https://doi.org/10.5194/tc-19-827-2025,https://doi.org/10.5194/tc-19-827-2025, 2025
Short summary
Creep enhancement and sliding in a temperate, hard-bedded alpine glacier
Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier
The Cryosphere, 19, 267–282, https://doi.org/10.5194/tc-19-267-2025,https://doi.org/10.5194/tc-19-267-2025, 2025
Short summary
Three-dimensional discrete element simulations on pressure ridge formation
Marek Muchow and Arttu Polojärvi
The Cryosphere, 18, 4765–4774, https://doi.org/10.5194/tc-18-4765-2024,https://doi.org/10.5194/tc-18-4765-2024, 2024
Short summary
Failure strength of glacier ice inferred from Greenland crevasses
Aslak Grinsted, Nicholas Mossor Rathmann, Ruth Mottram, Anne Munck Solgaard, Joachim Mathiesen, and Christine Schøtt Hvidberg
The Cryosphere, 18, 1947–1957, https://doi.org/10.5194/tc-18-1947-2024,https://doi.org/10.5194/tc-18-1947-2024, 2024
Short summary

Cited articles

Campbell, A. J., Waddington, E. D., and Warren, S. G.: Refugium for surface life on Snowball Earth in a nearly-enclosed sea? A first simple model for sea-glacier invasion, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL048846, 2011.
Campbell, A. J., Waddington, E. D., and Warren, S. G.: Refugium for surface life on Snowball Earth in a nearly enclosed sea? A numerical solution for sea-glacier invasion through a narrow strait, J. Geophys. Res.-Oceans, 119, 2679–2690, https://doi.org/10.1002/2013JC009703, 2014.
Cohen, P. A., Macdonald, F. A., Pruss, S., Matys, E., and Bosak, T.: Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia, Palaios, 30, 238–247, 2015.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn., Elsevier, Amsterdam, 2010.
Gelatt, T. S., Davis, C. S., Stirling, I., Siniff, D. B., Strobeck, C., and Delisle, I.: History and fate of a small isolated population of Weddell seals at White Island, Antarctica, Conserv. Genet., 11, 721–735, https://doi.org/10.1007/s10592-009-9856-6, 2010.
Download
Short summary
How could plant life, that needs light to survive, live on a planet covered with ice? Such a situation is thought to have existed during what are called the Snowball Earth events over 600 million years ago. Here we find that ice shadows, regions where ice has difficulty flowing into, may have a played a role in that survival of early plant life.
Share