Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-3063-2016
https://doi.org/10.5194/tc-10-3063-2016
Research article
 | 
16 Dec 2016
Research article |  | 16 Dec 2016

Critical investigation of calculation methods for the elastic velocities in anisotropic ice polycrystals

Agnès Maurel, Jean-François Mercier, and Maurine Montagnat

Related authors

Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest
The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019,https://doi.org/10.5194/tc-13-1495-2019, 2019
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Strain field evolution at the ductile-to-brittle transition: a case study on ice
Thomas Chauve, Maurine Montagnat, Cedric Lachaud, David Georges, and Pierre Vacher
Solid Earth, 8, 943–953, https://doi.org/10.5194/se-8-943-2017,https://doi.org/10.5194/se-8-943-2017, 2017
Short summary
Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014,https://doi.org/10.5194/tc-8-1129-2014, 2014

Related subject area

Ice Cores
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023,https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Detection of ice core particles via deep neural networks
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023,https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Development of crystal orientation fabric in the Dome Fuji ice core in East Antarctica: implications for the deformation regime in ice sheets
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022,https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022,https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324, https://doi.org/10.5194/tc-16-2301-2022,https://doi.org/10.5194/tc-16-2301-2022, 2022
Short summary

Cited articles

Azuma, N. and Goto-Azuma, K.: An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202–208, 1996.
Bennett, H. F.: An investigation into velocity anisotropy through measurements of ultrasonic wave velocities in snow and ice cores from Greenland and Antarctica, PhD thesis, University of Wisconsin, Madison, 1968.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath Ice Stream B: 1. Properties derived from seismic travel times, J. Geophys. Res.-Solid Ea., 92, 8903–8911, 1987.
Diez, A. and Eisen, O.: Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties, The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, 2015.
Gusmeroli, A., Pettit, E. C., Kennedy, J. H., and Ritz, C.: The crystal fabric of ice from full?waveform borehole sonic logging, J. Geophys. Res.-Ea. Surf., 117, F03021, https://doi.org/10.1029/2012JF002343, 2012.
Download
Short summary
Crystallographic texture evolution with depth along ice cores can be evaluated using borehole sonic logging measurements. These measurements provide the velocities of elastic waves that depend on the ice polycrystal anisotropy and can further be related to the ice texture. To do so, elastic velocities need to be inverted from a modeling approach that relate elastic velocities to ice texture. The present paper presents a critical analysis of the different methods used for the inversion.