Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-3063-2016
https://doi.org/10.5194/tc-10-3063-2016
Research article
 | 
16 Dec 2016
Research article |  | 16 Dec 2016

Critical investigation of calculation methods for the elastic velocities in anisotropic ice polycrystals

Agnès Maurel, Jean-François Mercier, and Maurine Montagnat

Related authors

Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest
The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019,https://doi.org/10.5194/tc-13-1495-2019, 2019
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Strain field evolution at the ductile-to-brittle transition: a case study on ice
Thomas Chauve, Maurine Montagnat, Cedric Lachaud, David Georges, and Pierre Vacher
Solid Earth, 8, 943–953, https://doi.org/10.5194/se-8-943-2017,https://doi.org/10.5194/se-8-943-2017, 2017
Short summary
Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014,https://doi.org/10.5194/tc-8-1129-2014, 2014

Related subject area

Ice Cores
Scientific history, sampling approach, and physical characterization of the Camp Century subglacial material, a rare archive from beneath the Greenland Ice Sheet
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024,https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C ice core
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024,https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
The Cryosphere, 18, 3439–3451, https://doi.org/10.5194/tc-18-3439-2024,https://doi.org/10.5194/tc-18-3439-2024, 2024
Short summary
Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024,https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Research into mechanical modeling based on characteristics of the fracture mechanics of ice cutting for scientific drilling in polar regions
Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang
The Cryosphere, 18, 3351–3362, https://doi.org/10.5194/tc-18-3351-2024,https://doi.org/10.5194/tc-18-3351-2024, 2024
Short summary

Cited articles

Azuma, N. and Goto-Azuma, K.: An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202–208, 1996.
Bennett, H. F.: An investigation into velocity anisotropy through measurements of ultrasonic wave velocities in snow and ice cores from Greenland and Antarctica, PhD thesis, University of Wisconsin, Madison, 1968.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath Ice Stream B: 1. Properties derived from seismic travel times, J. Geophys. Res.-Solid Ea., 92, 8903–8911, 1987.
Diez, A. and Eisen, O.: Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties, The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, 2015.
Gusmeroli, A., Pettit, E. C., Kennedy, J. H., and Ritz, C.: The crystal fabric of ice from full?waveform borehole sonic logging, J. Geophys. Res.-Ea. Surf., 117, F03021, https://doi.org/10.1029/2012JF002343, 2012.
Download
Short summary
Crystallographic texture evolution with depth along ice cores can be evaluated using borehole sonic logging measurements. These measurements provide the velocities of elastic waves that depend on the ice polycrystal anisotropy and can further be related to the ice texture. To do so, elastic velocities need to be inverted from a modeling approach that relate elastic velocities to ice texture. The present paper presents a critical analysis of the different methods used for the inversion.