Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-3063-2016
https://doi.org/10.5194/tc-10-3063-2016
Research article
 | 
16 Dec 2016
Research article |  | 16 Dec 2016

Critical investigation of calculation methods for the elastic velocities in anisotropic ice polycrystals

Agnès Maurel, Jean-François Mercier, and Maurine Montagnat

Related authors

Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest
The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019,https://doi.org/10.5194/tc-13-1495-2019, 2019
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Strain field evolution at the ductile-to-brittle transition: a case study on ice
Thomas Chauve, Maurine Montagnat, Cedric Lachaud, David Georges, and Pierre Vacher
Solid Earth, 8, 943–953, https://doi.org/10.5194/se-8-943-2017,https://doi.org/10.5194/se-8-943-2017, 2017
Short summary
Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014,https://doi.org/10.5194/tc-8-1129-2014, 2014

Related subject area

Ice Cores
Impact of subsurface crevassing on the depth–age relationship of high-Alpine ice cores extracted at Col du Dôme between 1994 and 2012
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024,https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024,https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024,https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Research of mechanical model based on characteristics of facture mechanics of ice cutting for scientific drilling in polar region
Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2985,https://doi.org/10.5194/egusphere-2023-2985, 2024
Short summary
Identifying atmospheric processes favouring the formation of bubble-free layers in the Law Dome ice core, East Antarctica
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023,https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary

Cited articles

Azuma, N. and Goto-Azuma, K.: An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202–208, 1996.
Bennett, H. F.: An investigation into velocity anisotropy through measurements of ultrasonic wave velocities in snow and ice cores from Greenland and Antarctica, PhD thesis, University of Wisconsin, Madison, 1968.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath Ice Stream B: 1. Properties derived from seismic travel times, J. Geophys. Res.-Solid Ea., 92, 8903–8911, 1987.
Diez, A. and Eisen, O.: Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties, The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, 2015.
Gusmeroli, A., Pettit, E. C., Kennedy, J. H., and Ritz, C.: The crystal fabric of ice from full?waveform borehole sonic logging, J. Geophys. Res.-Ea. Surf., 117, F03021, https://doi.org/10.1029/2012JF002343, 2012.
Download
Short summary
Crystallographic texture evolution with depth along ice cores can be evaluated using borehole sonic logging measurements. These measurements provide the velocities of elastic waves that depend on the ice polycrystal anisotropy and can further be related to the ice texture. To do so, elastic velocities need to be inverted from a modeling approach that relate elastic velocities to ice texture. The present paper presents a critical analysis of the different methods used for the inversion.