Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2745-2016
https://doi.org/10.5194/tc-10-2745-2016
Research article
 | 
16 Nov 2016
Research article |  | 16 Nov 2016

Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system

Jiping Xie, François Counillon, Laurent Bertino, Xiangshan Tian-Kunze, and Lars Kaleschke

Related authors

Reconstruction of Arctic sea ice thickness (1992–2010) based on a hybrid machine learning and data assimilation approach
Léo Edel, Jiping Xie, Anton Korosov, Julien Brajard, and Laurent Bertino
EGUsphere, https://doi.org/10.5194/egusphere-2024-1896,https://doi.org/10.5194/egusphere-2024-1896, 2024
Short summary
Contribution of satellite sea surface salinity to the estimation of liquid freshwater content in the Beaufort Sea
Marta Umbert, Eva De Andrés, Maria Sánchez, Carolina Gabarró, Nina Hoareau, Veronica González-Gambau, Aina García-Espriu, Estrella Olmedo, Roshin P. Raj, Jiping Xie, and Rafael Catany
Ocean Sci., 20, 279–291, https://doi.org/10.5194/os-20-279-2024,https://doi.org/10.5194/os-20-279-2024, 2024
Short summary
Assimilation of sea surface salinities from SMOS in an Arctic coupled ocean and sea ice reanalysis
Jiping Xie, Roshin P. Raj, Laurent Bertino, Justino Martínez, Carolina Gabarró, and Rafael Catany
Ocean Sci., 19, 269–287, https://doi.org/10.5194/os-19-269-2023,https://doi.org/10.5194/os-19-269-2023, 2023
Short summary
Improved BEC SMOS Arctic Sea Surface Salinity product v3.1
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 307–323, https://doi.org/10.5194/essd-14-307-2022,https://doi.org/10.5194/essd-14-307-2022, 2022
Short summary
Evaluation of Arctic Ocean surface salinities from the Soil Moisture and Ocean Salinity (SMOS) mission against a regional reanalysis and in situ data
Jiping Xie, Roshin P. Raj, Laurent Bertino, Annette Samuelsen, and Tsuyoshi Wakamatsu
Ocean Sci., 15, 1191–1206, https://doi.org/10.5194/os-15-1191-2019,https://doi.org/10.5194/os-15-1191-2019, 2019
Short summary

Related subject area

Sea Ice
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
National Weather Service Alaska Sea Ice Program: Gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1813,https://doi.org/10.5194/egusphere-2024-1813, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary

Cited articles

Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. D.: Coordinate transformation on a sphere using conformal mapping, Mon. Weather Rev., 127, 2733–2740, https://doi.org/10.1175/1520-0493(1999)127<2733:CTOASU>2.0.CO:2, 1999.
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, https://doi.org/10.1016/S1463-5003(01)00012-9, 2002.
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic method revised, Ocean Model., 7, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013.
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a data assimilation system, Q. J. Roy. Meteor. Soc., 130, 2767–2786, https://doi.org/10.1256/qj.03.205, 2004.
Download
Short summary
As a potentially operational daily product, the SMOS-Ice can improve the statements of sea ice thickness and concentration. In this study, focusing on the SMOS-Ice data assimilated into the TOPAZ system, the quantitative evaluation for the impacts and the concerned comparison with the present observation system are valuable to understand the further improvement of the accuracy of operational ocean forecasting system.