Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 9, issue 2
The Cryosphere, 9, 795–804, 2015
https://doi.org/10.5194/tc-9-795-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 795–804, 2015
https://doi.org/10.5194/tc-9-795-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Apr 2015

Research article | 27 Apr 2015

Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

J. Gaume et al.

Related authors

Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017,https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack
Fabiano Monti, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 16, 775–788, https://doi.org/10.5194/nhess-16-775-2016,https://doi.org/10.5194/nhess-16-775-2016, 2016
Short summary
Modeling of crack propagation in weak snowpack layers using the discrete element method
J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, and J. Schweizer
The Cryosphere, 9, 1915–1932, https://doi.org/10.5194/tc-9-1915-2015,https://doi.org/10.5194/tc-9-1915-2015, 2015
Short summary
Evaluating snow weak-layer failure parameters through inverse finite element modelling of shaking-platform experiments
E. A. Podolskiy, G. Chambon, M. Naaim, and J. Gaume
Nat. Hazards Earth Syst. Sci., 15, 119–134, https://doi.org/10.5194/nhess-15-119-2015,https://doi.org/10.5194/nhess-15-119-2015, 2015

Related subject area

Natural Hazards
On the relation between avalanche occurrence and avalanche danger level
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020,https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019,https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019,https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary
Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019,https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Cold-to-warm flow regime transition in snow avalanches
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018,https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary

Cited articles

Ancey, C., Gervasoni, C., and Meunier, M.: Computing extreme avalanches, Cold Reg. Sci. Technol., 39, 161–180, 2004.
Barbolini, M., Gruber, U., Keylock, C., Naaim, M., and Savi, F.: Application and evaluation of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites, Cold Reg. Sci. Technol., 31, 133–149, 2000.
Chiaia, B., Cornetti, P., and Frigo, B.: Triggering of dry snow slab avalanches: stress vs. fracture mechanical approach, Cold Reg. Sci. Technol., 53, 170–178, 2008.
Conway, H. and Abrahamson, J.: Snow stability index, J. Glaciol., 30, 321–327, 1984.
Eckert, N., Parent, E., and Richard, D.: Revisiting statistical-topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution, Cold Reg. Sci. Technol., 49, 88–107, 2007.
Publications Copernicus
Download
Short summary
Slab tensile failure propensity is examined using a mechanical--statistical model of the slab–-weak layer (WL) system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by elasticity of the slab and the slab possible tensile failure. For realistic values of the parameters, the tensile failure propensity is mainly driven by slab properties. Hard and thick snow slabs are more prone to wide–scale crack propagation and thus lead to larger avalanches.
Slab tensile failure propensity is examined using a mechanical--statistical model of the...
Citation