Articles | Volume 9, issue 1
Research article
10 Feb 2015
Research article |  | 10 Feb 2015

Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

R. Lindsay and A. Schweiger

Related subject area

Sea Ice
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958,,, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126,,, 2023
Short summary
Analysis of micro-seismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
EGUsphere,,, 2022
Short summary
Probabilistic spatiotemporal seasonal sea ice presence forecasting using sequence-to-sequence learning and ERA5 data in the Hudson Bay region
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773,,, 2022
Short summary

Cited articles

Haas, C. and Jochmann, P.: Continuous EM and ULS thickness profiling in support of ice force measurements, in: Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic conditions (POAC'03), 16–19 June 2003, Trondheim, Norway, edited by: Loeset, S., Bonnemaire, B., and Bjerkas, M., Norwegian University of Science and Technology, Trondheim, 849–856, 2003.
Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A.: Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system, J. Appl. Geophys., 67, 234–241, 2009.
Haas, C., Hendricks, S., Eicken, H., and Herber, A.: Synoptic airborne thickness surveys reveal state of Arctic sea ice cover, Geophys. Res. Lett., 37, L09501,, 2010.
Hansen, E., Gerland, S., Granskog, M. A., Pavlova, O., Renner, A. H. H., Haapala, J., Lyning, T. B., and Tschudi, M.: Thinning of Arctic sea ice observed in Fram Strait: 1990–2011, J. Geophys. Res.-Oceans, 118, 5202–5221,, 2013.
Krishfield, R. A. and Proshutinsky, A.: BGOS ULS Data Processing Procedure. Woods Hole Oceanographic Institute report, available at: (last access: 26 April 2013), 2006.
Short summary
The sea ice thickness of the Arctic Basin is estimated from sources that include upward-looking sonars, electromagnetic sensors, and lidar or radar altimeters. Good agreement is found between five of the systems while larger systematic differences are found for others. The trend in annual mean ice thickness, 2000--2013, is –0.58–/+0.07m decade–1; for the central Arctic Basin alone the annual mean ice thickness has decreased from 3.45m in 1975 to 1.11m in 2013, a 68% reduction.