Articles | Volume 9, issue 1
The Cryosphere, 9, 255–268, 2015
https://doi.org/10.5194/tc-9-255-2015
The Cryosphere, 9, 255–268, 2015
https://doi.org/10.5194/tc-9-255-2015

Research article 09 Feb 2015

Research article | 09 Feb 2015

Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer

D. V. Divine et al.

Related authors

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022,https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
CO2 flux over young and snow-covered Arctic pack ice in winter and spring
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018,https://doi.org/10.5194/bg-15-3331-2018, 2018
Do contemporary (1980–2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017,https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017,https://doi.org/10.5194/tc-11-2137-2017, 2017
Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017,https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary

Related subject area

Sea Ice
A new state-dependent parameterization for the free drift of sea ice
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022,https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
Arctic sea ice sensitivity to lateral melting representation in a coupled climate model
Madison M. Smith, Marika Holland, and Bonnie Light
The Cryosphere, 16, 419–434, https://doi.org/10.5194/tc-16-419-2022,https://doi.org/10.5194/tc-16-419-2022, 2022
Short summary
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022,https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021,https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Wave dispersion and dissipation in landfast ice: comparison of observations against models
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021,https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary

Cited articles

Björk, G., Stranne, C., and Borenäs, K.: The Sensitivity of the Arctic Ocean Sea Ice Thickness and Its Dependence on the Surface Albedo Parameterization, J. Climate, 26, 1355–1370, https://doi.org/10.1175/JCLI-D-12-00085.1, 2013.
Castro-Morales, K., Kauker, F., Losch, M., Hendricks, S., Riemann-Campe, K., and Gerdes, R.: Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations, J. Geophys. Res.-Oceans, 119, 559–571, https://doi.org/10.1002/2013JC009342, 2014.
Conover, W.: Practical nonparametric statistics, Wiley series in probability and statistics, Wiley, New York, USA, 3rd edn., 584 pp., 1999.
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea Ice-Albedo Climate Feedback Mechanism., J. Climate, 8, 240–247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995.
Curry, J. A., Schramm, J. L., Perovich, D. K., and Pinto, J. O.: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations, J. Geophys. Res.-Atmos., 106, 15345–15355, https://doi.org/10.1029/2000JD900311, 2001.
Download
Short summary
Regional melt pond coverage and albedo of thin (70-90cm) first year Arctic sea ice in advanced stage of melt was estimated from a combination of low-altitude imagery and in situ measurements north of Svalbard in summer 2012. The study revealed a homogeneous melt across the study area with a typical pond fraction of 0.29 and sea-ice albedo of 0.44. A decrease in pond fraction was, however, observed in the 30km marginal ice zone, occurring in parallel with an increase in open-water coverage.