Articles | Volume 9, issue 1
The Cryosphere, 9, 229–243, 2015
https://doi.org/10.5194/tc-9-229-2015
The Cryosphere, 9, 229–243, 2015
https://doi.org/10.5194/tc-9-229-2015

Research article 06 Feb 2015

Research article | 06 Feb 2015

Snow depth mapping in high-alpine catchments using digital photogrammetry

Y. Bühler et al.

Related authors

A seasonal algorithm of the snow-covered area fraction for mountainous terrain
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021,https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-85,https://doi.org/10.5194/nhess-2021-85, 2021
Revised manuscript accepted for NHESS
Short summary
Mapping avalanches with satellites – evaluation of performance and completeness
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021,https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Fractional snow-covered area: scale-independent peak of winter parameterization
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021,https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021,https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary

Related subject area

Remote Sensing
Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine
YoungHyun Koo, Hongjie Xie, Stephen F. Ackley, Alberto M. Mestas-Nuñez, Grant J. Macdonald, and Chang-Uk Hyun
The Cryosphere, 15, 4727–4744, https://doi.org/10.5194/tc-15-4727-2021,https://doi.org/10.5194/tc-15-4727-2021, 2021
Short summary
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021,https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021,https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021,https://doi.org/10.5194/tc-15-4465-2021, 2021
Short summary
Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021,https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary

Cited articles

Aguilar, F. J. and Mills, J. P.: Accuracy assessment of lidar-derived digital elevation models, Photogramm. Record, 23, 148–169, 2008.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, 2009.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Buchroithner, M. F.: Problems of mountain hazard mapping using spaceborne remote sensing techniques, Adv. Space Res., 15, 57–66, 1995.
Bühler, Y., Meier, L., and Ginzler, C.: Potential of Operational High Spatial Resolution Near-Infrared Remote Sensing Instruments for Snow Surface Type Mapping, IEEE Geosci. Remote Sens. Lett., 12, 1–5, https://doi.org/10.1109/LGRS.2014.2363237, 2015.
Download
Short summary
We are able to map snow depth over large areas ( > 100km2) using airborne digital photogrammetry. Digital photogrammetry is more economical than airborne Laser Scanning but slightly less accurate. Comparisons to independent snow depth measurements reveal an accuracy of about 30cm. Spatial continuous mapping of snow depth is a major step forward compared to point measurements usually applied today. Limitations are steep slopes (> 50°) and areas covered by trees and scrubs.