Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-229-2015
https://doi.org/10.5194/tc-9-229-2015
Research article
 | 
06 Feb 2015
Research article |  | 06 Feb 2015

Snow depth mapping in high-alpine catchments using digital photogrammetry

Y. Bühler, M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler

Related authors

Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Autonomous and efficient large-scale snow avalanche monitoring with an Unmanned Aerial System (UAS)
Jaeyoung Lim, Elisabeth Hafner, Florian Achermann, Rik Girod, David Rohr, Nicholas R. J. Lawrance, Yves Bühler, and Roland Siegwart
EGUsphere, https://doi.org/10.5194/egusphere-2024-2728,https://doi.org/10.5194/egusphere-2024-2728, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374,https://doi.org/10.5194/essd-2024-374, 2024
Revised manuscript accepted for ESSD
Short summary
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024,https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147,https://doi.org/10.5194/nhess-2024-147, 2024
Revised manuscript accepted for NHESS
Short summary

Related subject area

Remote Sensing
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary

Cited articles

Aguilar, F. J. and Mills, J. P.: Accuracy assessment of lidar-derived digital elevation models, Photogramm. Record, 23, 148–169, 2008.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, 2009.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Buchroithner, M. F.: Problems of mountain hazard mapping using spaceborne remote sensing techniques, Adv. Space Res., 15, 57–66, 1995.
Bühler, Y., Meier, L., and Ginzler, C.: Potential of Operational High Spatial Resolution Near-Infrared Remote Sensing Instruments for Snow Surface Type Mapping, IEEE Geosci. Remote Sens. Lett., 12, 1–5, https://doi.org/10.1109/LGRS.2014.2363237, 2015.
Download
Short summary
We are able to map snow depth over large areas ( > 100km2) using airborne digital photogrammetry. Digital photogrammetry is more economical than airborne Laser Scanning but slightly less accurate. Comparisons to independent snow depth measurements reveal an accuracy of about 30cm. Spatial continuous mapping of snow depth is a major step forward compared to point measurements usually applied today. Limitations are steep slopes (> 50°) and areas covered by trees and scrubs.
Share