Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-1005-2015
https://doi.org/10.5194/tc-9-1005-2015
Research article
 | 
13 May 2015
Research article |  | 13 May 2015

Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming

Related authors

An alternative representation of Synthetic Aperture Radar images as an aid to the interpretation of englacial observations
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068,https://doi.org/10.5194/egusphere-2025-1068, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
The Antarctic Ice Sheet sliding law inferred from seismic observations
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764,https://doi.org/10.5194/egusphere-2025-764, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993–2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-578,https://doi.org/10.5194/essd-2024-578, 2025
Preprint under review for ESSD
Short summary
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024,https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Brief communication: Reduced bandwidth improves the depth limit of the radar coherence method for detecting ice crystal fabric asymmetry
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
EGUsphere, https://doi.org/10.5194/egusphere-2024-2519,https://doi.org/10.5194/egusphere-2024-2519, 2024
Short summary

Related subject area

Ice Sheets
Spatiotemporal patterns of accumulation and surface roughness in interior Greenland with a GNSS-IR network
Derek J. Pickell, Robert L. Hawley, and Adam LeWinter
The Cryosphere, 19, 1013–1029, https://doi.org/10.5194/tc-19-1013-2025,https://doi.org/10.5194/tc-19-1013-2025, 2025
Short summary
The influence of firn layer material properties on surface crevasse propagation in glaciers and ice shelves
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martínez-Pañeda
The Cryosphere, 18, 5573–5593, https://doi.org/10.5194/tc-18-5573-2024,https://doi.org/10.5194/tc-18-5573-2024, 2024
Short summary
Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under conditions of high ice-shelf basal melt
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
The Cryosphere, 18, 5207–5238, https://doi.org/10.5194/tc-18-5207-2024,https://doi.org/10.5194/tc-18-5207-2024, 2024
Short summary
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary

Cited articles

Albrecht, T. and Levermann, A.: Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica, Earth Planet. Sc. Lett., 393, 26–30, https://doi.org/10.1016/j.epsl.2014.02.034, 2014.
Arcone, S. A.: Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, USA, J. Glaciol., 48, 317–334, https://doi.org/10.3189/172756502781831412, 2002.
Banwell, A. F., MacAyeal, D., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Munneke, P. K., van den Broeke, M. R., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys. Res.-Earth, 118, 315–330, https://doi.org/10.1029/2012jf002559, 2013.
Bathmann, U., Smetacek, V., de Baar, H., Fahrbach, E., and Krause, G.: The expeditions ANTARKTIS X/6-8 of the research vessel "POLARSTERN" in 1992/93, Alfred-Wegener-Institut, Bremerhaven, Germany, 236 pp., 1994.
Download
Short summary
Antarctic Peninsula ice shelves have collapsed in recent decades. The surface of Larsen C Ice Shelf is lowering, but the cause of this has not been understood. This study uses eight radar surveys to show that the lowering is caused by both ice loss and a loss of air from the ice shelf's snowpack. At least two different processes are causing the lowering. The stability of Larsen C may be at risk from an ungrounding of Bawden Ice Rise or ice-front retreat past a 'compressive arch' in strain rates.
Share