Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-1005-2015
https://doi.org/10.5194/tc-9-1005-2015
Research article
 | 
13 May 2015
Research article |  | 13 May 2015

Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Paul Holland on behalf of the Authors (24 Mar 2015)  Author's response   Manuscript 
ED: Publish as is (27 Mar 2015) by Olivier Gagliardini
AR by Paul Holland on behalf of the Authors (27 Mar 2015)
Download
Short summary
Antarctic Peninsula ice shelves have collapsed in recent decades. The surface of Larsen C Ice Shelf is lowering, but the cause of this has not been understood. This study uses eight radar surveys to show that the lowering is caused by both ice loss and a loss of air from the ice shelf's snowpack. At least two different processes are causing the lowering. The stability of Larsen C may be at risk from an ungrounding of Bawden Ice Rise or ice-front retreat past a 'compressive arch' in strain rates.