Reply to reviewers' comments on "Oceanic and Atmospheric forcing of Larsen C Ice Shelf thinning"

We are very grateful to both referees for their support and constructive reviews, which have been invaluable in clarifying the paper. Their comments are re-printed in blue text below, with responses wherever needed. We note also that we have changed the title of the paper in response to the reviewers' comments. We have uploaded a revised version of the paper with 'tracked changes' highlighted, and the line numbers below refer to lines in this uploaded document.

In addition to responding to these reviewer comments, we have modified the paper in response to three new relevant studies. Jansen et al. (2015) detail the propagation of a large rift in LCIS that may proceed to threaten its compressive arch, Paolo et al. (in press) show that the surface lowering of LCIS has recently focussed on Bawden Ice Rise, and Khazendar et al. (in press) show that the remnant Larsen B Ice Shelf is showing clear signs of instability.

Anonymous Referee #1

General

This paper sets out to resolve a long-standing issue on the causes of Larsen C ice shelf thinning. While earlier studies ascribe the surface lowering/thinning to enhanced basal ice melt, later studies suggested that firn compaction, notably its northern regions, could also have a major impact. By quantifying both terms separately along a survey line in the central ice shelf area, that has been revisited multiple times, the authors conclude that it is likely that both processes explain a similar amount of surface lowering along this line. However, the uncertainties remain large because of the heterogeneous datasets used, which contain significant noise. The extensive error analysis does justice to these uncertainties and provides the right context to interpret the results.

Recommendation

The paper is well and clearly written, albeit somewhat long, and the figures are of good quality. It is certainly an original and important contribution to an important research topic, and the science, including an extensive uncertainty estimate, appears careful and robust. That is why my assessment is that relatively minor revisions are needed for this paper to become publishable in The Cryosphere, see below.

General comments

In the introduction, previous studies on the possible reasons for the surface lowering of LCIS are discussed, but no introductory discussion is dedicated to the spatial variability in observed elevation changes (Figs. 1a and 1b). In previous studies, were these significant variations thought to represent measurement uncertainty or real signals, or both? Please elaborate.

The spatial variations since 1994 are regarded as a real signal in all studies. Some have used the northward intensification of lowering as evidence of a surface melting influence, since surface melting is known to be strongly northward-intensified. This argument is only indicative, however, because we have little knowledge of the spatial distribution of ocean melting. We have strengthened the sentence announcing the variation (line 55) and draw the reviewer's attention to the sentence outlining the melting argument (line 99).

In spite of (or owing to!) the careful consideration of all potential sources of error, the uncertainties in the final results are large, and that is why I feel the title could be somewhat less 'definitive', for instance by starting with the wording 'A primary estimate of...', as is used in the first sentence of the discussion.

We considered this at some length, but couldn't come up with a better title that succinctly captures the focus of the study. We feel that something like 'An assessment of oceanic and atmospheric forcing of Larsen C Ice Shelf thinning' contains too many sub-clauses. The abstract faithfully describes that we are assessing these forcings, and that our reported results are a primary estimate subject to considerable uncertainties. In the title, we have swapped 'Atmospheric and oceanic forcing...' to 'Oceanic and atmospheric forcing...' to reflect our primary finding of a greater role for ice loss than air loss (see response to reviewer 2).

p. 256, l. 8: Can the presence of liquid water really be ruled out, given the recent finding of perennial firn aquifers in Greenland?

Boreholes drilled in LCIS have yielded no evidence of a perennial aquifer. Specifically, 6 holes drilled by hot water and instrumented with thermistors in 3 widely dispersed locations produced no evidence of a borehole pressure drop, reduced drilling progress, or thermal signature that would be expected from an aquifer (personal communications with Keith Nicholls and Bryn Hubbard, 2015). The sentence has been modified to state that there is no evidence for a perennial aquifer (line 144), and this is now fully described in section 4.3 (line 568).

p. 260: Can the assumption that the southward decrease in surface elevation between surveys, which in the paper is now simply ascribed to increasing radar penetration to the south, where firn air content increases, be corroborated for instance by a quantitative comparison with firn air content (e.g. using the data of Holland and others, 2011)?

A quantitative comparison is not justified because radar penetration is affected only by the top few metres of firn, while the study of Holland et al. (2011) derives the total columnintegrated firn air content, and there are many reasons why the two might not co-vary in detail. Nevertheless, we feel it is worthwhile noting that the southward decrease in elevation difference is at least consistent with less compact firn (greater penetration) in the south. The sentence has been modified to emphasise the qualitative nature of this agreement. (line 299).

Fig. 4: Why are no data points provided for ice and air thickness anomalies and the satellite data?

The satellite data are a timeseries of quasi-monthly data from the 5 merged crossovers (section 2.5), and to add them to the plot would make it extremely dense. We never derive ice and air thickness anomalies for the individual surveys; equations (5) and (6) show how ice and air trends are derived directly from elevation and TWTT trends (i.e. the blue and black dashed lines in Figure 4 are derived directly from the green and red dashed lines). This has the advantage that uncertain quantities that are steady in time, such as the geoid and mean dynamic topography, are explicitly excluded from the calculation. This is now fully explained (line 178).

p. 264, l. 21: Replacing the surveyed elevation trend with the satellite elevation trend (Fig. 5a vs. Fig. 7a) completely changes the interpretation of the air loss signal, from one that is monotonically increasing in magnitude from north to south, to one that has a maximum magnitude in center of the survey line. In view of this rather arbitrary swapping of data, the word 'conclude' (p. 264, l. 26) is too strong to my taste, and should be replaced by something like 'hypothesise'.

Changed to 'Figure 7a suggests that...' (line 419).

Specific comments

p. 252, l. 11: "Though the ice loss is much larger, ice and air loss contribute approximately equally to the lowering." This is ambiguous; the word 'larger' has no explicit meaning here (mass, vertical motion?). Please reformulate in terms of contributions to ice shelf thinning or surface lowering.

The preceding sentence says that the lowering is caused by ice loss of ~0.3 m/y and air loss of ~0.03 m/y. The ice loss is larger. We have changed the sentence to 'The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating' (line 22).

p. 253, l. 7: Please explain how firn compaction could -indirectly- have led to ice shelf weakening.

Changed to 'However, longer-term processes such as ice thinning and firn compaction must first have driven these ice shelves into a state liable to collapse by weakening the ice and enabling meltwater to pool on the ice surface' (line 49).

p. 254, l. 21: and THAT the northern edge of LCIS is at this limit...(?)

Changed to '... suggests that atmospheric warming may have pushed some ice shelves beyond a thermal limit of viability (Morris and Vaughan, 2003); the northern edge of LCIS is at this limit' (line 96).

p. 254, l. 23: high -> significant.

Changed to 'higher' (line 98).

p. 254, l. 26: Modelled firn compaction entirely offset the lowering in one study of 2003–2008 (Pritchard et al., 2012), BUT WITH A LARGE UNCERTAINTY

Changed to 'albeit with a high uncertainty' (line 102).

p. 255, l. 3: suggest to remove 'strongly'

The trends are strongly negative and so we prefer the sentence as it is (line 106).

p. 257: In expressions 7 and 8, is the different in significant numbers in the factors real, or should 1.06 be 1.060?

All numbers are given with 3 significant figures; there is no difference (line 184).

p. 259, l. 24: thinner -> smaller

Changed to 'lower' (line 260).

p. 261, l. 24: "... that is not supported by the remaining data." What remaining data?

Changed to 'This is important because studies of LCIS that include these early data (Fricker and Padman, 2012; Shepherd et al., 2003) derive very rapid lowering in the 1990s that is not found if the early data are neglected' (line 328).

p. 263, l. 19: If anomalies relative to 2004 are presented, should then 2004 not have a zero point for elevation, or are these hidden behind the red dot? Why no uncertainty for that point?

The dot for 2004 elevation anomalies relative to 2004 is indeed hidden behind the TWTT anomaly dot, since both are zero. The 2004 data have no error because the error bars refer to the standard error of the differences between the individual data points in each survey and their 2004 counterparts. Both points are now clarified in the text and figure caption. (lines 385 and 1157).

p. 294, Fig. 5a: the blue point in the legend appears to be a point in the graph, consider moving the legend to upper part of graph.

We have enclosed the legends for figures 5a and 7a in boxes.

Review comments by A. Khazendar

Overview

The main objective of the manuscript is to describe a technique that partitions observed iceshelf surface elevation changes into components of ice and air content changes. The technique combines measurements of surface elevation changes with contemporaneous travel times through the ice shelf of a radar signal. The method is applied to 8 surveys of a transect in the central part of the Larsen C Ice Shelf. The authors conclude that the observed surface lowering was probably due to both air and ice loss, with air loss more likely to be the more prevalent of the two. Possible implications of these findings for the stability of Larsen C are then discussed.

We are concerned that the reviewer has concluded that air loss is more likely to be the prevalent cause of the lowering. Our primary estimate is that ice loss is an order of magnitude larger than air loss and so we would argue that ice loss is the dominant change implied by our results. This is a complex issue, however, for two reasons: 1) since the ice is floating, these rates of ice loss and air loss contribute approximately equally to the lowering (within error bars they have the same effect on lowering, though the central estimate is that the air loss has a slightly larger effect); 2) if one arbitrarily neglects individual surveys, it is possible to render insignficant the conclusion of ice loss, but the conclusion of air loss is robust (Table 2).

We have addressed this issue by re-ordering the title to 'Oceanic and atmospheric forcing...' rather than 'Atmospheric and oceanic forcing...', emphasising in the abstract that the ice loss is much larger than the air loss (line 22), and emphasising in the conclusions that we argue ice loss to be the dominant change affecting LCIS (line 864).

The work addresses an important question. Attributing observed thinning in peninsular ice shelves to oceanic or atmospheric causes has been long debated as part of the effort to understand the destabilization of these ice shelves. Ice shelves on the eastern peninsula generally have lower basal melting rates compared with elsewhere in Antarctica, hence atmospheric warming could be as important a factor in observed ice shelf thinning as enhanced basal melting, if not more so.

The method devised is highly innovative and promising. One of the main challenges in implementing it is the high uncertainty of the observations, especially in a situation where observed thinning rates are relatively low. The authors address this issue with an extensive discussion of the errors involved and by using different combinations of the data sets in performing their calculations. The manuscript could probably benefit from review by someone with more knowledge of statistical error analysis than I do. Apart from the uncertainties, one aspect of the theory remains unclear as discussed below.

See response below.

The manuscript is mostly very well written and presented, if somewhat sprawling. In particular, parts of section 5.2 on ice-shelf stability read like a review paper with little relevance to the current work and can benefit from some abridgement.

Section 5.2 reviews the future prognosis for LCIS. Since our results allow us to assess ice-loss and air-loss timescales for the first time, it was not previously possible to speculate with any

certainty upon the possible mechanisms for imminent LCIS collapse. We regard this as a crucial exposition of the implications of this work, which is all the more important in light of the Jansen et al. (2015), Paolo et al. (in press), and (Khazendar et al., in press) papers and the possibility that LCIS collapse is now imminent. We have shortened section 5.2 wherever possible.

Main remarks

P. 256, equations 1 and 2: neither equation has information about the relative vertical distributions of ice and air in the ice shelf. The method as I understand it would work, however, because it combines the observed surface elevation with the observed change in TWTT. The combination constrains the possible partitioning scenarios and is able to attribute the observed change to ice and/or air change. This approach, however, seems to have an underlying assumption. Namely, that signal propagation in, and the dielectric properties of, an ice/air mixed medium will change linearly with the change of ratio of air to ice. Is this the case?

Equation (2) states that the total delay of the radar wave passing through the ice shelf is the linear sum of the delay due to the total solid ice thickness and the delay due to the total thickness of air inclusions in the firn. This is also known as the 'Complex Refractive Index Method' and has been used in quite a few studies of glaciological radar data. The method is introduced briefly and equation (2) is now provided with a reference to the CRIM (Arcone, 2002) (line 157).

P. 268 L. 5: I believe that instrument and processing specifications and errors deserve more discussion, especially given the relatively small thinning rates in this study. For example, what is the time resolution and bandwidths of the instruments used, and are they sufficient to distinguish unambiguously the changes in TWTT?

This is an extremely good question, to which the answer is complex. In the text below, we use 'precision' to refer to the length of time between samples of the radar return echo power. We understand the reviewer's question to be whether or not the precision in the data is fine enough to capture the observed thinning signal.

The TWTT data are recorded with a wide variety of instruments and subject to different processing techniques to optimise the signal prior to picking (Table 1 and Section 2.3). When considering the TWTT changes, the important measure is not the precision of the instrument, it is the precision of the processed data from which the TWTT is picked. This is usually lower than that of the instrument, since processing to reduce the noise in the data also reduces the resolution. The precision in the echograms picked varies between surveys, with a mean of ~4 m ice thickness equivalent (~24 nanoseconds) and a range of 0.125—8.8 m ice equivalent. The mean TWTT trend is ~3.5 m ice equivalent over 15 years (Figure 4), and so at face value this trend may seem indistinguishable by the data. There are many factors to be taken into consideration, but there are two primary reasons why this is not the case.

Firstly, the position of the 'first break' in the return echoes can be estimated at a higher precision than the TWTT data. The waveform of the echoes are at least 10 times the length of the TWTT precision, and it is the position of a gradient at the leading edge of this waveform that we seek to determine. In our processing, the leading edge is fitted using high-order

interpolation, and the position of the first break is determined at a nominal precision one tenth that of the original data (i.e. a mean of \sim 0.4 m).

Secondly, and most importantly, each difference plotted in Figure 4, from which ice and air trends are calculated, is actually the mean of a population of thousands of point differences, with standard deviations of ~10 m (Table 3) and ranges of \pm 40 m (Figure 2). These populations are well-resolved by the TWTT precision, and so we are able to detect the mean difference statistically to a precision much finer than that of the individual data. As an extremely crude illustration, imagine if precision is 1 m ice-equivalent in two surveys and we have observed 1000 TWTT differences between them; if 300 points show a first-break 1 m shorter and 700 show no change, the mean change estimated would be a reduction of 0.3 m; this is less than the 1 m precision of an individual data point but a validly precise estimate of the mean difference between surveys.

We have responded to this point by adding an abridged version of the above discussion to section 2.3 (line 245).

P. 264 L. 19-24: the radar elevation trends were considered unreliable and replaced with satellite elevation trends. I assume that the same TWTT were then used in the calculation of ice and air losses. But, if the radar surface elevations were judged unreliable, wouldn't that mean that the corresponding TWTT should also be considered suspicious, given that TWTT are obtained from the signal travel time between the (unreliable) surface and bottom of the ice shelf?

For airborne surveys, the TWTT and elevation data are independent datasets derived from separate instruments. TWTT through the ice is derived from picking and then differencing the surface and basal echoes from an ice-sounding radar, while elevation is derived separately from an altimeter. The surface pick from the ice-sounding radar is not coincident with the altimeter elevation, and we are free to discard one set of measurements and retain the other, if justified.

In the text referred to, we consider the satellite-derived elevations to be more reliable than the surveyed elevations due to a concern over radar altimeter penetration in the 1998 survey. This could affect the surveyed elevation trend because later surveys use laser altimeters or GPS, which have no surface penetration. That concern does not apply to the TWTT, since the surface pick of the ice-penetrating radars has similar penetration in all surveys. This is now noted (line 412).

Figure 3 and caption: I find these confusing. North of latitude -67.8, the differences plotted in the figure are positive, implying that the (lower due to penetration) values from 2011 BAS survey were subtracted from the (higher) 2010 IceBridge laser altimetry measurements. South of -67.8, the caption explains, the 2011 data become progressively lower due to increased radar penetration of the firn, which means that their difference from the 2010 data laser altimetry data should increase, yet the opposite is shown in the figure.

As described in section 2.4, the 2011 radar altimeter elevation data are subject to two problems; first, they require general calibration, and second, they are subject to firn penetration in the south that needs to be removed to make them comparable to the laser altimeters and GPS used in the other surveys.

The differences shown in Figure 3 are 2011 minus 2010. For the uncorrected 2011 data (blue dots) this is generally positive, implying that the 2011 radar altimeter is apparently recording the surface higher than the 2010 laser altimeter, which sampled the surface only 10 weeks earlier and was precisely calibrated. Therefore, we regard this difference as a calibration error and correct the 2011 data by subtracting from them everywhere the mean offset north of 67.85S, 1.59 metres.

After this correction, the blue dots would be shifted downwards by 1.59 metres everywhere. This then produces a negative 2011-2010 difference in the south of the section, i.e. the 2011 radar altimeter is recording the surface lower than the 2010 laser altimeter. We attribute this to radar firn penetration, and correct it by adding a linear fit to the mismatch south of 67.85S. The corrected 2011 data minus the 2010 data are shown by the green dots.

To address this point, we have substantially rewritten the relevant text (line 289 onwards) and also rewritten the figure caption to reflect the above logic.

P. 268 L. 7-8: How does a spatial offset from the reference line introduce an error? Doesn't each data point come with its own spatial coordinate?

LCIS gets progressively thinner from west to east, with a progressively greater firn air content. If one survey were systematically to the west of the others it would sample thicker ice with less air, and this would appear as a temporal change in ice and air; an inter-survey error. Since none of the surveys is systematically offset this is not a problem, but the measurements do not precisely follow the same line, weaving slightly to the east and west, and this introduces intra-survey error. The sentence has been modified to clarify this (line 513).

Other remarks

P. 253 L. 6: here or elsewhere in the manuscript, please consider citing earlier work that investigated meltwater-induced ice fracture (e.g., Weertman, 1973; van der Veen, 1998), in addition to the work cited here already.

There is a large body of literature on meltwater-induced ice fracture so in the interest of brevity we have only added the van der Veen reference (line 45).

P. 259 L. 27 and Table 1: if the 2009 IceBridge TWTT data were not included, were any other data from this campaign used in the analyses leading to the final conclusions of the work? If no, why keep referring to 8 surveys instead of 7?

The surveyed elevation data from the 2009 IceBridge survey were used throughout, so the paper does consider 8 surveys. The retention of the elevation data from 2009 is now explicitly stated (line 264).

P. 253 L. 25-26: ocean water at or below sea-surface freezing temperature could still melt ice at depth. Replacing "sea-surface" with "in situ" would probably be more accurate.

Changed to '...found the ocean to be at or below the surface freezing temperature, suggesting that it is only capable of slow melting' (line 71).

P. 253 L. 27-29: even if marine ice presence were widespread it does not necessarily mean that cooler ocean temperatures are spatially and temporally prevalent. Existing marine ice could have accumulated mostly under past conditions.

Changed to 'widespread marine ice in LCIS suggests that these temperatures are spatially and historically prevalent' (line 74).

P. 254 L. 5: consider showing the location of the sonar measurements on the map of Fig. 1.

Sentence changed to 'sonar measurements near Kenyon Peninsula in the south of LCIS' (line 79).

P. 252 L. 16: "in [the] future".

We prefer the original wording, which is valid English usage (line 28).

References

- Arcone, S. A.: Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, USA, Journal of Glaciology, 48, 317-334, Doi 10.3189/172756502781831412, 2002.
- Holland, P. R., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern, R. J., Jenkins, A., and Tedesco, M.: The air content of Larsen Ice Shelf, Geophysical Research Letters, 38, L10503, 10.1029/2011gl047245, 2011.
- Jansen, D., Luckman, A. J., Cook, A., Bevan, S., Kulessa, B., Hubbard, B., and Holland, P. R.: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability, The Cryosphere Discussions, 9, 861-872, 10.5194/tcd-9-861-2015, 2015.
- Khazendar, A., Borstad, C. P., Scheuchl, B., Rignot, E., and Seroussi, H.: The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers, Earth and Planetary Science Letters, 10.1016/j.epsl.2015.03.014, in press.
- Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice shelves is accelerating, Science, in press.

1 Atmospheric and oceanic Oceanic and atmospheric forcing of

2 Larsen C Ice Shelf thinning

- 3 Paul R. Holland¹, Alex Brisbourne¹, Hugh F.J. Corr¹, Daniel McGrath^{2,3}, Kyle Purdon⁴, John
- 4 Paden⁴, Helen A. Fricker⁵, Fernando S. Paolo⁵, and Andrew Fleming¹.

- ⁶ ¹British Antarctic Survey, Cambridge, UK.
- ⁷ ²USGS Alaska Science Center, Anchorage, Alaska, USA.
- 8 ³Cooperative Institute for Research in Environmental Sciences, University of Colorado,
- 9 Boulder, Colorado, USA
- ⁴Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, Kansas, USA.
- ⁵Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California,
- 12 USA.

13 Abstract

The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula 14 have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening 15 the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the 16 largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean 17 melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel 18 method to analyse eight radar surveys, this study derives separate estimates of ice and air 19 thickness changes during a 15-year period. The uncertainties are considerable, but the primary 20 21 estimate is that the surveyed lowering $(0.066\pm0.017 \text{ m/y})$ is caused by both ice loss $(0.28\pm0.18 \text{ m/y})$ m/y) and firn air loss (0.037±0.026 m/y). Though the ice loss is much larger than the air loss, 22 23 but ice and air lossboth contribute approximately equally to the lowering because the ice is 24 floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary 25 estimate therefore requires that at least two forcings caused the surveyed lowering. 26 27 Mechanisms are discussed by which LCIS stability could be compromised in future, suggesting destabilisation timescales of a few centuries. The most rapid pathways to collapse are offered 28 by a flow perturbation arising from the ungrounding of LCIS from Bawden Ice Rise, or ice-29 front retreat past a 'compressive arch' in strain rates. Recent evidence suggests that either 30 31 mechanism could pose an imminent risk.

32 **1. Introduction**

The ice shelves of the Antarctic Peninsula (AP) have shown a progressive decline in extent 33 over the last five decades, including the catastrophic collapses of Larsen A Ice Shelf (LAIS) in 34 1995 and Larsen B Ice Shelf (LBIS) in 2002 (Scambos et al., 2003; Cook and Vaughan, 2010). 35 The collapse of LBIS was unprecedented in at least the last 12,000 years (Domack et al., 2005). 36 These collapses have reduced the restraint of the ice shelves on the flow of grounded tributary 37 38 glaciers, causing them to accelerate (Rignot et al., 2004; Berthier et al., 2012) and thereby contributing to sea-level rise (Shepherd et al., 2012). Increased freshwater input to the ocean 39 40 from the collapses and subsequent excess ice discharge is also thought to have freshened may be implicated in the freshening of the Antarctic Bottom Water formed nearby (Hellmer et al., 41 42 2011; Jullion et al., 2013).

43

44 These ice-shelf collapses are thought to have been accomplished by surface meltwater-driven crevassing (van der Veen, 1998; Scambos et al., 2003; van den Broeke, 2005; Banwell et al., 45 46 2013) and ice-front retreat past a 'compressive arch' in strain rates (Doake et al., 1998; Kulessa et al., 2014). The final collapses have been attributed to meltwater-induced ice fracture 47 following years of extreme atmospheric melting [Banwell et al., 2013; Scambos et al., 2003; 48 van den Broeke, 2005]However, but longer-term, longer-term processes such as ice thinning 49 50 and firn compaction must first have could have first driven weakened these ice shelves 51 intotowards a state liable to collapse by weakening the ice and enabling meltwater to pool on the ice surface. Apparently following the southward progression of ice-shelf instability on the 52 AP, satellite altimetry shows that the surface of Larsen C Ice Shelf (LCIS) has lowered in recent 53 54 decades (Shepherd et al., 2003; Pritchard et al., 2012; Paolo et al., in press). The lowering is known to be more rapid in the north of LCIS (Figure 1; updated from Fricker and Padman, 55 2012, as described in section 2)(Paolo et al., in press). Ice flow in this northern region has also 56

57 accelerated slightly, which may be related to a decrease in back-stress from Bawden Ice Rise following an iceberg calving in 2004/5 (Haug et al., 2010; Khazendar et al., 2011). However, 58 the origin of the lowering remains uncertain. Since the ice shelf is floating, the lowering could 59 60 be caused by a loss of firn air of nearly the same magnitude, a loss of solid ice approximately 10 times larger, or a combination of the two. (Jansen et al., 2015)With recent evidence of 61 unusual rifting apparently threatening the stability of LCIS (Jansen et al., 2015), T there is an 62 urgent need to understand the cause of this long-term lowering in order to project the possible 63 future collapse of LCIS and the impacts of its many glacier catchments upon sea-level rise and 64 65 ocean freshening.

66

The LCIS lowering was initially attributed to increased oceanic basal melting (i.e. ice loss) on 67 68 the basis that firn compaction from derived surface melting trends was insufficient to account for the signal (Shepherd et al., 2003). However, sparse observations of the ocean beneath LCIS 69 found the ocean to be at or below the sea-surface freezing temperature, suggesting that it is not 70 71 capable of rapid meltingonly capable of slow melting (Nicholls et al., 2012). Observations of 72 the meltwater emanating from the cavity (Nicholls et al., 2004) and widespread marine ice in LCIS (Holland et al., 2009; Jansen et al., 2013; McGrath et al., 2014) suggest that these 73 temperatures are spatially and temporally historically prevalent. Ocean waters entering the 74 75 LCIS cavity appear to be constrained to the surface freezing temperature by nearby sea-ice 76 formation. Since the Weddell Sea has consistently high rates of sea-ice production it has been regarded as hard to conceive of an ocean warming sufficient to increase melting enough to 77 explain the lowering (Nicholls et al., 2004). However, year-round sonar measurements at a 78 79 single location near Kenyon Peninsula in the south of LCIS yield a mean melt rate of ~ 0.8 m/y (with a range of 0-1.5 m/y), which is significantly higher and more variable than expected 80 81 (K.W. Nicholls, personal communication 2014; Nicholls et al., 2012). Furthermore, ocean data collected in January 1993 from the LCIS ice front (Bathmann et al., 1994) show anomalous
waters that are considerably warmer than any subsequently observed in the cavity or inferred
as sources for melting (Nicholls et al., 2004; Nicholls et al., 2012). If they entered the cavity,
such warm waters could produce a melting anomaly large enough to significantly perturb the
LCIS ice mass budget. Given our incomplete understanding of ocean processes and melting
beneath LCIS, oceanic thinning of LCIS remains a credible explanation for the lowering.

88

89 On the other hand, there is some evidence supporting a hypothesis that the lowering results from an atmosphere-driven increase in firn compaction (i.e. air loss), either through dry 90 compaction or through firn melting and refreezing. In general, tThhe AP has experienced strong 91 atmospheric warming since the 1950s (Marshall et al., 2006; Turner et al., 2014). A spatial 92 correspondence between ice-shelf collapses and mean atmospheric temperature suggests that 93 94 atmospheric warming may have pushed some ice shelves beyond a thermal limit of viability (Morris and Vaughan, 2003);, and the northern edge of LCIS is at this limit. Observations of 95 LCIS firn-air thickness confirm that there is sufficient firn air available for compaction, that 96 97 lower firn -air -spatially corresponds with higher melting, and that the northward-intensified surface lowering spatially corresponds to areas of high melting and firn compaction (Holland 98 99 et al., 2011; Trusel et al., 2013; Luckman et al., 2014). Modelled firn compaction entirely offset 100 the lowering in one study of 2003—2008 (Pritchard et al., 2012), albeit with a high uncertainty. A temporal correspondence between high annual melting and ice shelf collapse (van den 101 102 Broeke, 2005) would be expected to hold also for firn compaction before collapse. However, attributing the lowering to simple atmospheric temperature trends is not straightforward. 103 Observed AP surface melt days and modelled meltwater fluxes both lack significant trends 104 during 1979–2010 and have trends that are strongly negative during 1989–2010 (Kuipers 105 Munneke et al., 2012a). An Automatic Weather Station on LCIS lacks any significant 1985— 106

2011 trend in air temperature in any season (Valisuo et al., 2014), and there is no convincing
evidence of trends in melting derived from reanalysis models during recent decades (Valisuo
et al., 2014). Even without a trend in atmospheric forcing within recent decades, the period
could still be anomalous relative to the long-term mean, and so an atmosphere-driven lowering
remains viable.

112

In summary there is a wealth of circumstantial evidence related to the lowering, but no direct test of its origin. In this study we analyse repeated radio-echo sounding surveys of LCIS, applying a novel method to separate changes in ice thickness from changes in firn-air thickness (Holland et al., 2011). The method is presented in section 2 and its results in section 3. We then consider whether the uncertainties in these ice and air trends are sufficiently well-constrained to isolate the origin of the LCIS lowering (section 4), and speculate upon the prognosis for the ice shelf's future stability (section 5).

120

121 **2. Method**

Radar sounding provides the two-way travel time (TWTT) of a radar wave between the ice-122 shelf surface and base. This can be combined with accurate measurements of surface elevation 123 to derive separate thicknesses of the solid ice and englacial firn air that comprise an ice shelf 124 (Holland et al., 2011). With multiple surveys it is therefore possible to determine differences 125 126 in ice and air thickness over time. There have been many radar surveys of LCIS, but we find that a very large number of observations are needed to sufficiently reduce the random error in 127 the ice and air differences. Therefore, only repeated survey lines provide usable data; inter-128 129 survey cross-overs are not sufficient. Fortunately, a nearly meridional (across-ice flow) survey line sampling the centre of LCIS has been occupied eight times between 1998 and 2012 by 130 airborne and ground-based radar surveys (Figure 1b, Table 1), offering the opportunity to 131

derive interannual trends in ice and air thickness from these data. The survey line also passes
through five satellite cross-overs of European Space Agency radar altimeter missions, allowing
direct comparison to the known lowering.

135

136 **2.1 Theory**

We separate the total ice-shelf thickness into its constituent thicknesses of solid ice and firn air by following the method of Holland et al. (2011), with a few modifications. Since the floatation of an ice shelf and the propagation of a radar wave through an ice shelf both depend upon the relative proportions of ice and air, we formulate two corresponding equations from which two unknown quantities, ice and air thickness, are derived. The presence of a third unknown, liquid meltwater, is neglected on the basis that most surveys were undertaken early in the austral spring and there is no evidence of a perennial aquifer in LCIS (see section 4.3).

144

145 If the ice is freely floating then the hydrostatic ice and ocean forces must balance at the ice 146 base, so the total mass of the shelf ice and firn air equals that of the atmosphere and ocean 147 displaced

148

149

$$\rho_i I + \rho_a A = \rho_A S + \rho_o (I + A - S). \tag{1}$$

150

Here *I* is the total solid ice thickness, *A* is the total firn air thickness, *S* is the ice freeboard (surface elevation above sea level), and $\rho_i = 918$ kg m⁻³, $\rho_a = 2$ kg m⁻³, $\rho_A = 1.3$ kg m⁻³, and ρ_o = 1028 kg m⁻³, are densities of solid ice, englacial air (partly pressurised), atmospheric air, and ocean respectively, which are all assumed constant. Adopting a similar approach and separating the radar delay of ice from that of air using the simple, empirical Complex Refractive Index Method (e.g. Arcone, 2002), the TWTT of a radar wave through the ice shelf is

$$T = \frac{2}{c}(n_i I + n_a A), \tag{2}$$

159

where *T* is the TWTT, $c = 3 \times 10^8$ m s⁻¹ is the speed of light *in vacuo* and $n_i = 1.78$ and $n_a = 1.0$ are refractive indices of pure ice and air. Combining (1) and (2) and eliminating variables as appropriate, we obtain expressions for the constituent ice and air thicknesses (and hence total thickness, *I*+*A*) as functions of known quantities and the measured TWTT and surface elevation:

165

166
$$A = \left[\frac{c(\rho_o - \rho_i)}{2n_i}T + (\rho_A - \rho_o)S\right] / \left[(\rho_a - \rho_o) + \frac{n_a(\rho_o - \rho_i)}{n_i}\right]$$
(3)

167
$$I = \left[\frac{c(\rho_o - \rho_a)}{2n_a}T + (\rho_A - \rho_o)S\right] / \left[(\rho_i - \rho_o) + \frac{n_i(\rho_o - \rho_a)}{n_a}\right].$$
(4)

168

169 Taking the temporal derivative of these expressions, we obtain the trends in ice and air170 thickness as a function of the trends in elevation and TWTT:

171

172
$$\frac{\partial A}{\partial t} = \left[\frac{c(\rho_o - \rho_i)}{2n_i}\frac{\partial T}{\partial t} + (\rho_A - \rho_o)\frac{\partial S}{\partial t}\right] / \left[(\rho_a - \rho_o) + \frac{n_a(\rho_o - \rho_i)}{n_i}\right]$$
(5)

173
$$\frac{\partial I}{\partial t} = \left[\frac{c(\rho_o - \rho_a)}{2n_a}\frac{\partial T}{\partial t} + (\rho_A - \rho_o)\frac{\partial S}{\partial t}\right] / \left[(\rho_i - \rho_o) + \frac{n_i(\rho_o - \rho_a)}{n_a}\right]. \tag{6}$$

174

Hence, we calculate ice and air trends directly from elevation and TWTT trends; we do not
derive the ice and air thickness for each survey and then calculate their trends. This explicitly
excludes potentially large errors inherent in steady corrections to the input data, particularly
from the geoid and mean dynamic ocean topography. Evaluating the known quantities in these
terms(5)—(6), we find that

181
$$\frac{\partial A}{\partial t} = 1.06 \frac{\partial S}{\partial t} - 0.114 \frac{c}{2n_i} \frac{\partial T}{\partial t}$$
(7)

182
$$\frac{\partial I}{\partial t} = -0.598 \frac{\partial S}{\partial t} + 1.06 \frac{c}{2n_i} \frac{\partial T}{\partial t} , \qquad (8)$$

185

Note that the derivation of (5)—(6) from (3)—(4) neglects temporal derivatives of all densities, of which the most variable is the ocean density. Repeating the derivation and retaining ocean density terms provides an expression in which 0.3 m/y ice loss would require a $\sim 2 \text{ kg m}^{-3} \text{ year}^{-1}$ ¹ reduction in ocean density, and 0.03 m/y air loss would require a $\sim 0.1 \text{ kg m}^{-3} \text{ year}^{-1}$ increase in ocean density. Such changes persisting over 15 years are clearly implausible, and we conclude that ocean density changes have negligible effect.

192

193 **2.2 Application to Larsen C Ice Shelf**

We apply the above method to eight radar surveys between February 1998 and December 2012 194 195 along a line traversing the centre of LCIS (Figure 1b, red line). The surveys were carried out by ground-based field parties and a variety of aircraft flying at different heights and speeds, 196 and many different radar instruments and methods for measuring elevation were used (Table 197 1). The processed elevation and TWTT data are shown in Figures 2a and 2b. The most densely-198 spaced TWTT data were gathered during the 2004 NASA-CECS airborne survey, so this is 199 chosen as a baseline dataset. For each elevation and TWTT measurement in the other surveys, 200 we find the difference from the nearest corresponding measurement in the 2004 survey, 201 discarding all observations that do not have a 2004 analogue within 1000 m. These elevation 202 203 and TWTT differences are shown in Figures 2c and 2d. There is a great deal of scatter in the differences, which could result from several factors, including the advection of ice topography 204 across the survey line at ~400 m/y (Rignot et al., 2011). The differences are therefore binned 205

spatially to extract the overall signals by averaging random noise, and linear trends in surface
elevation and TWTT are calculated for the bins. Equations (5) and (6) are then used to
determine the trends in ice and firn-air thickness from trends in surface elevation and TWTT.
We apply this methodology in two ways, first considering the overall trends for the entire
survey line, and then dividing the survey into five bins, surrounding each of the five satellite
crossover points (Figure 1).

212

The 2012 British Antarctic Survey (BAS) ground-based survey was a mission of opportunity 213 214 within a wider seismic season (Brisbourne et al., 2014) and deviated from the rest of the surveys, heading due south (Figure 1b, yellow line). However, it did repeat a flight line from 215 the 1998 BAS airborne survey, so to include the data we first calculate the mean difference 216 217 between the 2012 and 1998 surveys along the meridional line, and then the mean difference between the 2004 and 1998 surveys along the primary line, and then use these to obtain the 218 2012-2004 difference. The results are only included in the northernmost bin when we 219 consider along-survey variability; they are not included in the whole-survey results. 220

221

222 2.3 Radio-echo sounding survey data

Different techniques are available for picking radar return echoes from echograms, and so to 223 224 ensure that our inter-survey trends are as robust as possible the ice surface and base echoes 225 from all surveys were re-picked in a consistent manner. Automatic first-break picks on timewindowed and scaled traces were manually edited to remove or correct mis-picks. For airborne 226 surveys, TWTT was calculated as the difference between ice surface and basal returns from the 227 228 ice-penetrating radar, thus minimising inter-survey biases by removing any error associated with the absolute accuracy of the radar. Basal return TWTTs from the ground-based survey 229 data were corrected for the radar antenna separation. In the NASA IceBridge 2009 and 2010 230

231 and BAS 2011 airborne surveys, the altitude of the aircraft in specific sections caused the surface multiple return to appear at a TWTT similar to that of the basal return, significantly 232 contaminating the picks. Therefore, the radargrams were overlain with an estimate of the 233 surface multiple return calculated from the aircraft altitude and also an estimate of the basal 234 return derived from the aircraft altitude, surface elevation and hydrostatic assumption. 235 Wherever the TWTT of these two signals was indistinguishable in the radargram, no basal 236 237 return pick was recorded. Significant marine ice bands were omitted from all surveys, because basal returns become indistinct and the meteoric-marine transition may be visible instead. 238

- 239
- 240

241 The TWTT data are recorded with a wide variety of instruments and subject to different 242 processing techniques to optimise the signal prior to picking. The TWTT precision in the echogram picked (i.e. the time between samples of return power; the reciprocal of the sampling 243 244 rate) varies between surveys, with a mean of ~ 4 m ice equivalent and a range of 0.13—8.8 m 245 ice equivalent. The 15-year TWTT change is of comparable magnitude to this precision (see below). However, the first break of the return echo is actually known at higher precision 246 247 because waveform fitting is used to interpolate between samples of the return echo power. Furthermore, each inter-survey TWTT difference, from which ice and air trends are calculated, 248 249 is actually the mean of a population of thousands of individual point differences. These 250 populations are well-resolved by the TWTT precision, and so by using large numbers of data points we are able to detect mean inter-survey differences statistically at a precision much finer 251 than that of the individual data. 252

253

<u>T</u>WTTs from the 2009 IceBridge survey were found to contain consistently shorter radar-wave
 delays than the 2009 McGrath ground-based survey despite being collected only two weeks

earlier, with a mean ice equivalent ice thickness approximately 10 m lowerthinner and therefore
a significant outlier relative to the other surveys. The data were investigated and re-picked, but
the problem seems to result from transmit/receive switches not meeting their switching-time
specification in the survey (https://data.cresis.ku.edu/#RDS). Therefore, , so the 2009 IceBridge
TWTT data are neglected throughout this study, other than in a test recalculation to demonstrate
their effect. The laser altimeter elevation data from this survey are used in all calculations.

263 **2.4 Surface elevation survey data**

Surveyed ice elevation data have several corrections applied to make them directly comparable. Corrections for the steady geoid and mean dynamic ocean topography are not required because the method employs only temporal differences in elevation, as shown by (5) and (6). All data are de-tided using the CATS2008a_opt model (L. Padman personal communication 2014) and have a local sea-level rise of 4 mm/y removed (Rye et al., 2014).

269

Most of the instruments used to derive elevation were well-calibrated in the field (e.g. 270 http://nsidc.org/data/docs/daac/icebridge/ilatm2/index.html), but the two BAS airborne 271 surveys in 1998 and 2011 were not calibrated to the centimetre-scale accuracy required here. 272 The 1998 survey passed over the open ocean in many locations, so these elevations were 273 corrected for tides, EIGEN-6C geoid (http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html), and 274 275 DTU12 mean dynamic topography (http://www.space.dtu.dk/english/Research/Scientific data and models/downloaddata), and 276 then the mean difference from zero (sea surface) of 1.01 m was removed from the entire dataset. 277 Repeating this procedure for the 2011 survey produced a 1.33 m offset, but from only a small 278 area of open-ocean data. Fortunately, it was possible to correct the 2011 elevations to match 279 280 the well-calibrated 2010 NASA IceBridge laser altimeter survey that took place 10 weeks

earlier. However, this was complicated by the issue of radar firn penetration. a progressive 281 282 southward decrease in the difference between surveys (Figure 3). Radar altimetry penetrates the surface and reflects from within the firn layer, whereas laser altimetry reflects from the 283 284 surface. North of 67.85 °S there is no broad-scale spatial variation in the offset between datasets (Figure 3), implying either uniform or no radar penetration. We regard subtract the mean offset 285 in this area, 1.59 m, as the calibration error and subtract it from the 2011 data everywhere and 286 287 then treat the variable radar penetration to the south separately. 288 289 The elevation estimates derived from the two BAS radar altimeter surveys need a firnpenetration correction to make them comparable to those derived from the laser altimeters and 290 291 <u>GPS.</u> After the above calibration, the 2011 radar altimeter survey records a progressively lower 292 surface than the 2010 laser altimeter survey to the south of 67.85 °S, so-which we ascribewe ascribe this southward decrease to firn penetration by the radar altimeter in the 2011 survey, . 293 This is qualitatively consistent with the known southward increase in firn air content (Holland 294 et al., 2011). North of 67.85 °S there is no broad-scale spatial variation in the offset between 295 datasets, implying either uniform or no radar penetration. We subtract the mean offset in this 296 area, 1.59 m, from the 2011 data and then treat the variable radar penetration to the south 297 298 separately. 299 300 The elevation estimates derived from the two BAS radar altimeter surveys need a firnpenetration correction to make them comparable to those derived from the laser altimeter and 301 GPS. This correction consists Therefore, we correct both the 1998 and 2011 radar altimeter 302 surveys by adding of a linear fit south of 67.85 °S to the difference between the IceBridge 2010 303 304 and BAS 2011 surveys (Figure 3). Thus, out<u>Out</u> of necessity, the correction includes implicit assumptions that there is no firn penetration north of this during either radar survey, and that
 penetration to the south did not change is identical in between February 1998 and January 2011.
 307

308 **2.5 Satellite radar altimeter elevation data**

Satellite radar altimeter data are used to corroborate the surveyed elevation data and provide a context for the lowering. The satellite elevation timeseries combine radar altimeter data from the ERS-1, ERS-2, and Envisat satellites using an existing methodology (Fricker and Padman, 2012) but including new data to the end of 2011. These data consist of repeat measurements of ice-shelf surface elevation at satellite orbit crossing points, available approximately every 35 days during Austral winters (April—November) during 1992—2011.

315

316 When analysing the data we found a strong correlation between changes in elevation and changes in surface backscatter for the period 1992-1993 (the first two years of ERS-1). This 317 anomalous behaviour in the altimeter backscatter, which alters the shape of the waveform from 318 which the elevation is deduced, occurs throughout Antarctica. This leads us to believe that 319 these data may not be reliable, so we only use data from 1994 onwards in this study. Shepherd 320 321 et al. (2010) and Paolo et al. (in press) also neglected data prior to 1994 in their analysisanalyses. This is important because other studies of LCIS that include these early data 322 323 (Shepherd et al., 2003; Fricker and Padman, 2012) derivehave very rapid lowering in the 1990s 324 (Shepherd et al., 2003; Fricker and Padman, 2012) that is not found if the early data are 325 neglected supported by the remaining data. To illustrate the lowering of LCIS we first consider the period 1994—2011 (Figure 1a), though our main analysis focuses upon the 1998—2011 326 327 period covered by the radar surveys (Figure 1b). During the latter period the LCIS lowering has the same general pattern, but the trends at the five crossovers covered by the survey line 328

are slightly different. Importantly, the survey line does not sample the northern section of LCISin which the fastest lowering occurs.

331

To compare elevation trends derived from the survey data to those derived from satellite radar 332 altimeter data (Figure 4 and Table 2) a single satellite elevation trend was derived that 333 represents all five independent satellite crossovers. First, the mean elevation for the Austral 334 winter of 1998 was calculated for each independent crossover and subtracted from each 335 crossover's time series. The resulting temporal elevation anomaly data were then treated as 336 337 individual data points in a single merged time series, and from that a linear trend was calculated to compare to the surveyed trends. Linear trends were also calculated at each crossover, as 338 presented in Figures 1, 5, 6, and 7. 339

340

341 **2.6 Ice and air mass balances**

ar

We consider the derived ice and air losses in the context of the ice and air mass balances of LCIS. The mass balance of the ice fraction of the ice shelf (i.e. excluding firn air) yields an equation governing the depth-integrated ice thickness

345

$$\frac{\partial I}{\partial t} + I \nabla . \, \boldsymbol{u} + \boldsymbol{u} . \, \nabla I = a_I - m_{I \flat} \tag{9}$$

347

348 where u is the two-dimensional horizontal ice velocity vector, a_I is net surface ice 349 accumulation, and $\underline{m_b}$ - $\underline{m_I}$ is basal melting. The mass balance of the air fraction of the ice shelf 350 yields a similar equation for depth-integrated air thickness

351

352
$$\frac{\partial A}{\partial t} + A \nabla . \, \boldsymbol{u} + \boldsymbol{u} . \, \nabla A = a_A - m_{As} - d \tag{10}$$

where a_A is the air trapped in the firn by accumulation, $m_{\underline{s}\underline{A}}$ is the loss of air by surface melting, percolation, and refreezing, and *d* is the loss of air by dry compaction. The terms on the lefthand side of both equations are the unsteady term, divergence, and advection.

357

When analysing the results we map the terms in the ice mass balance (9) following a previous 358 study (McGrath et al., 2014) that combined data from several sources. Divergence, advection, 359 and mass input terms can be mapped from satellite-based observations of ice velocity (Rignot 360 et al., 2011) and ice-shelf elevation (Griggs and Bamber, 2009), firn-air thickness derived from 361 airborne radar measurements (Holland et al., 2011), and model estimates of net surface 362 accumulation (Lenaerts et al., 2012). Though we also possess a spatial map of ice surface 363 elevation change, an unknown fraction of this is caused by firn-air changes and so we cannot 364 365 derive ice thickness change outside the temporal and spatial range of our survey data. Neglecting the unsteady term, we can derive a map of steady-state melting from the other terms. 366 Prior to these calculations the ice thickness and velocity fields are smoothed over a 20-km 367 footprint (masked outside the ice shelf) to remove small-scale noise that is amplified in the 368 spatial derivatives. The firn-air mass balance (10) contains so many unknown quantities that 369 we do not attempt to derive its terms. 370

371

372 **3. Results**

We first present the main results of the study, before a full analysis of the uncertainties insection 4.

375

376 **3.1 Trends over the whole survey line**

Figure 4 shows the elevation and TWTT for each survey, as mean differences from 2004 overthe entire survey line, and Table 2 gives the 'primary' derived trends for these 'reference' data

379 and also a variety of alternatives. Since the data points and their error bars refer to differences 380 from 2004, the 2004 data are zero for both elevation and TWTT, with zero error. The surveyed elevation differences show a lowering trend (-0.066 ± 0.017 m/y) that is very similar to that 381 382 obtained from the satellite altimeter data (-0.062 m/y); the trends are not expected to be identical due to method uncertainties and spatial and temporal differences in sampling. 383 Crucially, there is also a decreasing trend in surveyed TWTT (-0.296±0.17 m/y ice equivalent), 384 385 though there is considerably more inter-survey scatter in this quantity and uncertainty in the resulting trend (see section 4.3). Combining these observed trends using (5) and (6) reveals that 386 387 the <u>surface</u> lowering is caused <u>partly by by a combination of</u> air loss (-0.0367±0.026 m/y) and partly by ice loss (-0.274±0.18 m/y). The ice loss has a much greater magnitude, but the Ice loss 388 389 is an order of magnitude larger than air loss, but surface lowering is approximately ten times 390 more sensitive to air loss than ice loss, so ice and air loss, so that ice loss and air loss contribute approximately equally to the surface lowering. There is considerable scatter in the data and 391 392 several sources of uncertainty in the metthodology, but our conclusion that ice and air loss both 393 contribute to the lowering is robust when several different combinations of data are used in the calculations (see section 4). 394

395

396 3.2 Variation within survey line

We now consider spatial variability by binning the survey data around each satellite crossover (Figure 5a). The derived ice loss is reasonably uniform along the line, while the derived air loss is noticeably higher towards the southern end of the survey line. However, the surveyed elevation trends at the southern end of the line show considerably more lowering than the satellite elevation trends. Inspection of the data underlying the timeseries in each bin (Figure 6) reveals that the surveyed elevations are reasonable apart from the 1998 data in the southernmost bin (centred on 68.3 °S), which exceed the range of the figure. We consider the 404 satellite altimeter data to be a more reliable measure of lowering because the 1998 surveyed 405 elevation data are subject to calibration and firn-penetration corrections that are uncertain in 406 this area (see section 2.4). The TWTT data are not subject to these uncertain corrections, so we 407 retain these and recalculate the ice and air trends with Replacing the surveyed elevation trends 408 replaced by with the satellite elevation trends -(Figure 7a)-. This has virtually no effect on the 409 derived ice loss, but removes the air loss completely from the southernmost bin, so that the air 409 loss is concentrated on the centre of the survey line.

411

The air and ice losses shown in Figures 5a and 7a are scaled so that their resultant surface lowering can be read on the left-hand axis. From Figure 7a suggests we conclude that air loss contributes the majority of the lowering in the centre of the survey line, while ice loss also contributes to this lowering and is responsible for the lowering at both ends. It is unsurprising that the ice and air loss have different spatial patterns, given their different (oceanic, icedynamic, and atmospheric) forcings.

418

419 **3.3 Ice and air budgets**

Figure 8 shows the maps of each term in the LCIS ice mass balance (9). Thinning along 420 flowlines causes a sink of ice through divergence (Figure 8a), advection is generally a source 421 of ice where the ice shelf flows from thick to thin (Figure 8b), and modelled surface 422 423 accumulation is almost uniform (Figure 8c). Their sum, the steady melting map (Figure 8d), contains obvious artefacts but also many features that match our existing knowledge of ocean 424 melting beneath LCIS. For example, the results are in agreement with a simple ocean-layer 425 426 model (Holland et al., 2009) that predicts strong melting along the grounding line and freezing in the thinner ice immediately offshore of islands and peninsulas on the western coast (also 427 visible as negative values in the advection term). A more sophisticated three-dimensional ocean 428

model (Mueller et al., 2012), forced only by tides, predicts large values of tidally-driven
melting next to Bawden Ice Rise and Kenyon Peninsula, which also seem apparent in Figure
8d, though other areas of high melting near the ice front and south of Kenyon Peninsula are not
consistent with the model.

433

Combining the estimated mean terms in the ice mass budget (Figure 8) with the ice loss derived 434 along the survey line (Figures 5a and 7a) allows us to consider the full unsteady ice budget 435 (Figure 5b and 7b). The basic ice balance is between accumulation and divergence, with 436 437 advection becoming important at the southern end of the line. If the ice shelf were in steady state the derived oceanic melt rate would be an order of magnitude smaller than accumulation 438 and divergence (0.06 m/y). In fact, our derived ice loss profiles suggest a mean oceanic melt 439 440 rate over the survey line of 0.26 m/y, peaking at 0.5 m/y in the southernmost bin. These estimates are consistent with modelled patterns of melting (Holland et al., 2009; Mueller et al., 441 2012) and observations in a higher-melting region nearby (K.W. Nicholls, personal 442 443 communication 2014; Nicholls et al., 2012). Crucially, without basal melting the components of the mass budget are approximately balanced, so the majority of the melting is causing net 444 ice loss. This emphasizes that for ice shelves melted by cold ocean waters, relatively small 445 absolute changes in melting can have a significant influence on the ice shelf mass balance. In 446 447 comparison, warm-water ice shelves such as Pine Island Glacier can have much larger melting 448 perturbations (e.g. 5 m/y; Wingham et al., 2009), causing equally correspondingly large thinning rates, but these perturbations are a much smaller fraction of the mean melt rate (e.g. 449 100 m/y; Dutrieux et al., 2013). 450

451

The terms in the analogous firn-air budget are extremely uncertain. To put the derived air loss of 0.04 m/y into context, we simply note that there was 10—15 m of air in the surveyed section

during the 1997/98 survey (Holland et al., 2011), and if fresh snow is deposited at a density of
350—450 kg m⁻³ (Kuipers Munneke et al., 2012b) then the accumulation of 0.5 m/y ice implies
the addition of 0.5—1 m/y firn air each year before compaction is taken into account.
Therefore, our best estimate is that the net air loss is only 5-10% of the annual air input.

458

459 **4. Error estimation**

The data contain a considerable amount of scatter and their interpretation relies upon a clear understanding of the uncertainties inherent in the derived trends. For this reason, we present a thorough error analysis before proceeding to discuss the implications of our findings. This analysis starts with a simple technique for visually assessing the reliability of the results, before proceeding to more formal methods.

465

466 4.1 Visual Assessment

It is possible to visually assess the reliability of ice and air trends from appropriately-plotted
trends in elevation and TWTT. If the TWTT trend is expressed as a solid-ice surface-elevation
equivalent, i.e.

470

471

$$\frac{\partial T_s}{\partial t} = \frac{c}{2n_i} \frac{\rho_o - \rho_i}{\rho_o - \rho_A} \frac{\partial T}{\partial t},\tag{11}$$

472

then comparing $\partial T_s/\partial t$ to the elevation trend $\partial S/\partial t$ allows us to determine the value of $\partial A/\partial t$ from (5). Any elevation trend that is more negative than $\partial T_s/\partial t$ implies a loss of air, with the air loss equal to 1.06 times the difference between $\partial S/\partial t$ and $\partial T_s/\partial t$. For this purpose, the two y-axes of Figures 4, 5a, 6, and 7a are scaled such that the left-hand axis shows both ice surface elevation ($\partial S/\partial t$) and TWTT expressed as solid-ice surface equivalent ($\partial T_s/\partial t$). Consideration of the numerator of (6) shows that $\partial T_s/\partial t$ merely has to be more negative than 479 $-0.107 \times \partial S/\partial t$ to imply a loss of ice; any $\partial T_s/\partial t$ that is negative enough to be distinguished 480 in the figures implies some ice loss. In plain terms, Figure 4 is scaled such that if the red line 481 (scaled TWTT trend) is parallel to the green line (elevation trend) then the lowering is due 482 solely to ice loss, and if the red line is flat then all of the lowering is due to air loss.

483

These criteria allow a simple visual assessment of the signal present in the available data. Our assessment of Figure 4 is that the scaled TWTT is decreasing, but that this result is not robust in the sense that it is dependent upon all datasets and removing certain surveys would remove the <u>decrease_calculated trend</u>. This reduces confidence in the conclusion that ice loss has occurred. On the other hand, we do not believe that the scaled TWTT data could support a trend that is more negative than the elevation trend, and therefore we are confident in our conclusion that air loss has occurred.

491

A formal analysis revisits these conclusions below, but this requires many assumptions about the nature of the errors and so is not necessarily superior. There are many sources of error in our surveys, which we divide into two classes. The first class of errors produces random intrasurvey scatter, which affects the extent to which the data from each survey estimate the mean signal within that survey. The second class of errors create a systematic signal across a whole survey, directly affecting inter-survey differences. The latter are of greatest concern because they have the largest effect on trends.

499

500 **4.2 Intra-survey errors**

501 Predominantly intra-survey errors include:

Instrument and processing error (including radar picking error, assumed intra-survey
 because all surveys were re-picked consistently).

Spatial offset from the <u>2004 survey</u> reference line (there is no systematic spatial difference between surveys, but the data deviate from a straight line within surveys, and the mean east—west gradients in ice thickness and firn air thus induce intra-survey
 <u>error</u>).

508 509 • Advection of complex ice topography through the survey line (assumed intra-survey because ice features are smaller than both the along-survey distance and the advection lengthscale in the across-survey direction: 15 years × 400 m/y).

511

510

We can easily quantify these random errors by considering, for each survey, the statistics of 512 each population of differences of data points from their 2004 analogues (Table 3). Standard 513 514 deviations are relatively large, 1-2 m for elevation and ~10 m ice equivalent for TWTT, as expected from previous analyses of the error in individual point measurements (Holland et al., 515 2009). However, when all data are considered the standard errors are small due to the large 516 sample sizes. Assuming that the differences are independent and normally distributed, 95% 517 confidence interval bounds for the survey mean are given by multiplying the standard error by 518 519 1.96, as shown by the error bars in Figure 4. We estimate overall 95% confidence interval bounds as ± 0.04 m for elevation and ± 0.5 m ice equivalent for TWTT. Thus, from a random 520 error perspective, we are confident that all surveys differ significantly from 2004 apart from 521 522 the elevation differences in the 2011 and McGrath 2009 surveys and both elevation and TWTT datasets in 2012. Simple examination of the error bars in Figure 4 shows that variation within 523 these random error bounds will have negligible effect on the computed trends. 524

525

526 **4.3 Inter-survey errors**

527 Predominantly inter-survey errors include:

528	•	Differences between survey instruments, calibration, and processing (radar altimeter										
529		penetration, ice-penetrating radar power and frequency, speed and altitude of										
530		acquisition platform).										
531	•	Time-variable presence of liquid meltwater in the firn column.										
532	•	Time-variable firn penetration in the ice-penetrating radar surface pick.										
533	•	The time-variable part of dynamic ocean topography (inter-survey because most										
534		surveys are rapid compared to the relevant variations in ocean flow; affects elevation										
535		only).										
536	•	Error in the tidal model correction (inter-survey because most surveys are rapid										
537		compared to tides; affects elevation only).										
538	•	The inverse barometer effect (inter-survey because most surveys are rapid compared to										
539		the relevant variations in atmospheric pressure; affects elevation only).										
540												

541 An initial concern is that the NASA IceBridge and NASA-CECS surveys (high-altitude, highspeed, consistent radar systems, laser altimeter) differ from the BAS airborne surveys (lower-542 altitude, slower, different radar, radar altimeter) and both differ from the ground-based surveys 543 (low-frequency radar, GPS elevation). However, the three types of survey are interleaved in 544 545 time, so such differences do not necessarily cause systematic trends. The issue is assessed by 546 re-calculating the trends using different combinations of data (Table 2). Considering only the two BAS surveys produces broadly the same results. However, considering only NASA 547 IceBridge and NASA-CECS surveys produces a much weaker surface lowering and no 548 549 decrease in TWTT, so that the ice loss disappears. Systematically removing the surveys from the calculation reveals that it is neglecting the BAS 1998 survey that removes these trends 550 (Table 2). We know of no reason to neglect this survey, but this suggests that we treat TWTT 551 and ice trends with additional caution. 552

The presence of meltwater in the firn would require us to adapt the methodology because it 554 affects both the hydrostatic floatation and radar-wave delay of the ice shelf, as described by 555 Holland et al. (2011), leading to different ice and air thicknesses being derived from the same 556 TWTT and elevation. This potentially confounding issue is neglected because most surveys 557 were sampled in November, before the onset of melt (Barrand et al., 2013), and instrumented 558 559 boreholes have revealed no evidence of a perennial aquifer (K. W. Nicholls and B. Hubbard, personal communications, 2015). However, the two BAS surveys were sampled in summer and 560 561 could be contaminated by the presence of meltwater. Repeating the derivation of (3) and (4) but including the effects of meltwater produces new equations from which 0.57 m more air and 562 5.6 m less ice would be derived for every 1 m of meltwater present (Holland et al., 2011). A 563 564 maximum LCIS meltwater content of 0.4 m (Holland et al., 2011) therefore implies a maximum underestimate of 0.23 m air and overestimate of 2.24 m ice. The summer of 1997/98 was a high 565 melting year (Tedesco, 2009), and if meltwater was present during the 1998 survey the derived 566 air content should be higher and ice content lower, enhancing the air loss trend and reducing 567 the ice loss trend. A linear regression to 0.23 m air error and -2.24 m ice error in 1998 and no 568 meltwater-derived error in the other surveys yields maximum trend errors of -0.0137 m/y air 569 and +0.134 m/y ice. Melt estimates for 2010/11 are not available, but any 2011 meltwater 570 would have the opposite effect on the inter-survey trends to 1998 meltwater, and thus mitigate 571 572 this issue.

573

For the airborne surveys, surface penetration could affect both radar altimeters and the surface pick of ice-penetrating radars. We have used a penetration correction in radar altimeter data (see above), and their agreement with the satellite elevation trend implies that deviation from this correction is not important. Our strategy of finding the ice TWTT by picking the surface

and basal returns and differencing the result means that surface penetration could affect the 578 TWTT. We examine this by comparing the radar surface picks with altimeter data. This test is 579 imperfect because it introduces errors from the aircraft altitude and surface elevation data, and 580 requires absolute accuracy in the radar data that is not needed of the TWTT differences used. 581 The test cannot even be performed for the NASA IceBridge and NASA-CECS surveys because 582 the absolute timing of the radar pulse transmission is not known to the required accuracy. The 583 mean difference between altimeter-derived surface elevations and radar-derived surface 584 elevations is 2.14 m for the BAS 1998 survey and 2.38 m for the BAS 2011 survey. The 585 586 altimeter-derived elevation is higher than the radar-derived elevation in both cases, so the difference may be caused by surface penetration. This very limited dataset suggests that radar 587 firn penetration is of order 2 m, with an interannual variability of order 0.2 m. 588

589

These differences between radar surface picks and altimeter data are also the only independent 590 information we have to quantify overall inter-survey error in TWTT differences. They are again 591 imperfect in this role because they include error in aircraft altitude and surface elevation data 592 that does not appear in the TWTT differences used in (5) and (6). Also, if the error in basal and 593 surface picks is identical (e.g. from an absolute calibration error) then the error in their 594 difference is zero. On the other hand, if the surface and basal errors are uncorrelated and of the 595 same magnitude then the TWTT difference error is the surface pick error multiplied by $\sqrt{2}$. We 596 597 believe that an inter-survey error of 2 m ice equivalent for TWTT is a reasonable compromise, and this value is in good agreement with the deviation of the TWTT points from the trend line 598 in Figure 4. 599

600

601 The effects of unsteady dynamic ocean topography, error in the tidal correction, and inverse 602 barometer effect should each contribute an inter-survey error of order 0.1 m to the surface

elevation differences (L. Padman, personal communication, 2014; Padman et al., 2003; King and Padman, 2005). If these errors are uncorrelated, this would create a total error of about 0.2 m, and this estimate is consistent with both the deviation of the surveys from the linear trend and the difference in elevation between the two 2009 surveys (Figure 4). In any case, the surface lowering from the satellite crossovers provides an independent test of the surveyed elevation trend, and the two trends are only slightly different (Table 2), as might be expected from the difference in spatial and temporal sampling.

610

Given these overall inter-survey error estimates (0.2 m elevation and 2 m TWTT ice equivalent), we used a Monte Carlo approach to estimate the resultant uncertainty in the elevation and TWTT trends. The trends were recalculated 500,000 times with all data points subject to a perturbation drawn from a normal distribution with 95% confidence interval bounds equal to the error estimates. This yields a population of trends with 95% confidence interval bounds of ± 0.017 m/y for elevation trends and ± 0.17 m/y ice equivalent for TWTT trends. Evaluating the terms as in (7) and (8) and combining the errors in quadrature yields

618

619

$$\varepsilon_{At} = \sqrt{0.013\varepsilon_{Tt}^2 + 1.13\varepsilon_{St}^2} \tag{12}$$

$$\varepsilon_{lt} = \sqrt{1.13\varepsilon_{Tt}^2 + 0.36\varepsilon_{St}^2}.$$
(13)

621

Where ε_{At} , ε_{It} and ε_{St} are errors in $\partial A/\partial t$, $\partial I/\partial t$, and $\partial S/\partial t$ respectively. The symbol ε_{Tt} represents the error in $c/2n_i \ \partial T/\partial t$, TWTT converted to solid ice thickness. These formulae yield uncertainties of ± 0.026 m/y for $\partial A/\partial t$ and ± 0.18 m/y for $\partial I/\partial t$.

625

626 **4.4 Error summary**

627 In summary, formal error estimates suggest that both the ice and air loss derived in our reference calculation are robust. However, visual assessment of Figure 4 suggests that the data 628 support air loss more strongly than ice loss. Recalculating the trends with different 629 630 combinations of the data (Table 2) shows that almost all possible calculations have significant air loss; the only way to obtain insignificant air loss is to include 2009 IceBridge TWTT data 631 known to be erroneous. On the other hand, removing either the BAS 1998 or McGrath 2009 632 633 surveys is sufficient to render the ice loss insignificant. Any meltwater that were present during the BAS 1998 survey would further strengthen the air loss and weaken the ice loss. Our best 634 635 estimate is that the lowering is a result of both air loss and ice loss, but there remains a possibility that air loss is solely responsible. 636

637

638 The preceding calculations apply to the whole-survey comparisons shown in Figure 4. The latitude bins shown in Figures 5-7 contain fewer data, so the intra-survey standard error 639 should increase. Standard errors scale with the reciprocal square root of the number of 640 641 datapoints, so the 95% confidence interval bounds approximately double (±0.08 m for elevation and ± 1 m ice equivalent for TWTT) when the data sample size are reduced by a factor 642 of 5. Inter-survey systematic error should in principle remain similar, but on the shorter length 643 scale of an individual bin, several intra-survey errors become inter-survey in character 644 (differences in radar picking, survey path, and advection of ice features, which can be a 645 646 significant fraction of a bin length in the along-survey direction). Scrutinising the time series in Figure 6 suggests a reasonable confidence in the binned trends. In most cases a downward 647 trend of the TWTT is apparent, suggesting some ice loss has occurred, and the scaled TWTT 648 649 data would not support a downwards trend steeper than the satellite elevation, suggesting air loss has occurred. The steepest elevation trends and shallowest TWTT trends are in the centre 650 651 of the survey line, implying greatest air loss.

653 **5. Discussion**

The uncertainties are considerable, but our primary estimate is that the lowering $(0.066\pm0.017$ m/y, or 0.99 ± 0.26 m) is caused by both ice loss $(0.28\pm0.18 \text{ m/y}, \text{ or } 4.2\pm2.7 \text{ m})$ and firn air loss $(0.037\pm0.026 \text{ m/y}, \text{ or } 0.56\pm0.39 \text{ m})$. It is notable that though their effect on the lowering is approximately equal, ice loss is an order of magnitude larger than air loss. The derivation of these values allows us to speculate upon the possible sources of the changes, and their future implications.

660

661 **5.1 Sources of change**

The existence of mean rates of change in ice and air over our 15-year period imply an imbalance in the other terms of (9) and (10) during this time. We consider the ability of each of these terms to cause the imbalance and therefore the ice and air losses. Whether the budget was ever balanced in the past, with the observed imbalance then implying that changes have occurred, is a separate question that we cannot answer.

667

We start with sources and sinks. Above-balance basal melting will cause ice loss but not air 668 loss, and can easily account for our ice loss signal. Any melting greater than a few centimetres 669 per year can cause an imbalance (Figure 7), and observations and models easily support the 670 671 rates of ~0.26 m/y needed to explain the ice loss (Holland et al., 2009; Mueller et al., 2012; Nicholls et al., 2012). Above-balance surface melting and refreezing or dry compaction 672 (through atmospheric warming) will cause only air loss, and it is again easy for these processes 673 674 to account for the air loss signal observed here. Below-balance surface accumulation will cause air and ice loss at a ratio of 2:1—1:1 if snow is initially deposited at a density of 350—450 kg 675 m⁻³ (Kuipers Munneke et al., 2012b) and compensating compaction changes are ignored. 676

Below-balance accumulation of approximately half of the modelled value (Figure 7) would be
required to solely explain our ice loss, and the fact that our ice loss is an order of magnitude
larger than the air loss suggests that below-balance accumulation alone cannot account for both.
A small below-balance accumulation could, however, explain the air loss. Since the total input
of air into the firn is 0.5—1 m/y, relatively small anomalies in surface melting, dry compaction,
or accumulation are required to yield the observed 0.04 m/y air loss.

683

We now turn to dynamic mechanisms. Above-balance ice flow advection will affect air and ice 684 685 thicknesses in proportion to their relative gradients along-flow. According to the results of Holland et al. (2011), increased advection would enhance the flow of thicker ice with less firm 686 air across the survey line. The air thickness increases along-flow by approximately 1 m for 687 688 every 10 m decrease in along-flow ice thickness. Above-balance advection would therefore cause air loss, but accompanied by ice gain approximately ten times faster, which entirely 689 contradicts our observed signals. Above-balance ice flow divergence will cause air and ice 690 691 losses in proportion to their relative thicknesses, approximately 1:30 for characteristic ice and air thicknesses of 10 m and 300 m. The largest velocity change in the literature is an 692 acceleration of 80 m/y between 2000 and 2006 surveys of northern LCIS (Haug et al., 2010; 693 Khazendar et al., 2011). If this acceleration caused unbalanced divergence over a length scale 694 695 of 100 km, it would cause ice loss of ~0.24 m/y and air loss of ~0.008 m/y. Above-balance 696 divergence could explain the ice loss, but not the air loss, if maintained at this level and not accompanied by above-balance advection. 697

698

In summary, the ice loss we observe could be explained by above-balance basal melting and/or
ice divergence, and the air loss could be explained by below-balance accumulation <u>and/or</u>
above-balance surface melting and/or compaction. Our results therefore suggest that at least

two different forcings caused the lowering of LCIS during our survey period. Elsewhere around Antarctica, rapid ice-shelf thinning is thought to be driven by unbalanced ocean melting (e.g. Shepherd et al., 2004; Holland et al., 2010; Padman et al., 2012; Khazendar et al., 2013), and our robust evidence of a firn-air loss from LCIS in response to surface processes is the first direct evidence of an exception to this. The existence of at least two different mechanisms underlying the change is also consistent with our observation that the ice and air loss signals have different spatial variation along the survey line.

709

The surveys do not encompass all of the known ice-shelf lowering (Figure 1), and it is likely that the balance of ice and air losses, and their driving mechanisms, varies in different regions and periods. In particular, our surveys do not capture the rapid lowering in northern LCIS. Ice divergence may play a part in this, since the known acceleration of LCIS is northwardintensified (Haug et al., 2010; Khazendar et al., 2011), but there are also good reasons to expect changes in surface melting to be largest in the north (Holland et al., 2011; Trusel et al., 2013; Luckman et al., 2014). The pattern of changes in basal melting is unknown.

717

718 **5.2 Ice-shelf stability**

Our results have important implications for the future stability of LCIS and thus the AP Ice 719 Sheet. Previous ice-shelf collapses are thought to have been accomplished by surface 720 721 meltwater-driven crevassing (van der Veen, 1998; Scambos et al., 2003; van den Broeke, 2005; Banwell et al., 2013) and or ice-front retreat past a 'compressive arch' in strain rates (Doake et 722 al., 1998; Kulessa et al., 2014). The northeastern part of LCIS is likely to be least stable, since 723 724 it has high surface melting and low firn air [Holland et al., 2011], is showing the most rapid lowering [Shepherd et al., 2003] and acceleration [Khazendar et al., 2011], is highly crevassed 725 [McGrath et al., 2012], is slow-moving and largely sustained by accumulation, and has a stress 726

727 field conducive to instability [Kulessa et al., 2014]. We conceive several interconnected 728 mechanisms by which LCIS stability could be compromised: 1) ice-front retreatse past a compressive arch; 2) increased surface melting causes firn depletion and meltwater-driven 729 730 crevassing; 3) decreased ocean freezing or increased melting depletes marine ice, permitting the propagation of crevasses; 4) collapse of the Scar Inletremnant LBIS opens a new ice front 731 at the northern margin of LCIS; 5) ungrounding from Bawden Ice Rise removes an ice-front 732 733 pinning point; 6) ice thinning and acceleration enhances the propagation of crevasses and weakens shear zones. 734

735

736 **5.2.1 Retreat past compressive arch**

737 Doake et al. (1998) suggested that LBIS was in a stable configuration when the second principal 738 strain rate was compressive everywhere inshore of a 'compressive arch' near the ice front. Once this arch was breached by calving, a significant collapse followed. Kulessa et al. (2014) 739 740 showed that LCIS has a large region near the ice front in which the second principal stress is 741 tensile and thus offshore of a compressive arch. Kulessa et al. (2014) also considered the angle between the flow and first principal stress under the assumption that rifts strike perpendicular 742 to the flow; i, arguing that af the first principal stress is aligned with the flow it will 743 therefore would tend to open rifts, rendering the ice shelf unstable. LCIS has a large region with 744 745 near the ice front in which the ffirst principal stress is oriented across-flow, thus stabilising the 746 ice shelf according to this measure. TIt is argued that this region is secured by marine ice, (Kulessa et al., 2014), but there is clearly a risk that calving in this region will remove ice that 747 748 both stabilises rifts and shields the compressive arch, leading to a progressive collapse of LCIS. 749 Worryingly, a rift in the south of LCIS has propagated rapidly beyond a band of marine ice that has stabilised all such rifts during the observational era (Jansen et al., 2015). Depending upon 750

751 <u>its evolution, this rift may threaten the LCIS compressive arch within a few years</u>(Jansen et al.,
 752 <u>2015).</u>

753 We are unable to assess a timescale for this possibility.

754

755 **5.2.2 Meltwater-driven crevassing**

756 The final collapse of many AP ice shelves has been linked to the availability of surface meltwater to enhance the downward propagation of surface crevasses (Scambos et al., 2003; 757 van den Broeke, 2005; Banwell et al., 2013). There are significant crevasse fields on the surface 758 759 of LCIS, so we hypothesise that <u>future increases in meltwater ponding could contribute to ice</u> shelf collapse is sufficient to drive collapse. Currently, mMeltwater is already pondingponds 760 761 form in limited areas near the LCIS grounding line (Holland et al., 2011; Luckman et al., 2014), 762 but these do not pose an imminent risk- of collapseof collapse. Before more extensive ponding can occur it is necessary for the firn to be largely depleted of its air content, since otherwise 763 764 meltwater will simply percolate and refreeze. Holland et al. (2011) showed that the nnorthern 765 part of LCIS had approximately 10 m of firm air remaining in 1998, while the retreating LBIS had very little. Our derived air loss of 0.04 m/y would require 250 years to deplete 10 m of air 766 and threaten LCIS stability. However, the lowest air content and highest lowering are north of 767 the survey line, and it is likely that surface melting will increase over the coming centuries 768 (Kuipers Munneke et al., 2014), so this timescale is probably an upper bound. 769

770

771 **5.2.3 Depletion of marine ice**

There is plenty of evidence that LCIS is stabilised by marine ice (Holland et al., 2009;
Khazendar et al., 2011; Jansen et al., 2013; Kulessa et al., 2014; McGrath et al., 2014), and this
implies thatso decreased marine ice deposition or increased melting could allow LCIS to
collapse under its existing stress fieldstrain field. The Mmarine ice at the ice front can form a

776 very small fraction of the ice column, implying that the stability of basal crevassing and ice-777 front calving is controlled by only tens of metres of marine ice (McGrath et al., 2014). Elsewhere the marine ice can be hundreds of metres thick (Jansen et al., 2013; Kulessa et al., 778 779 2014; McGrath et al., 2014). If our ice loss estimate of 0.3 m/y is caused by unbalanced basal melting, this suggests a timescale of 170 years to remove the bottom 50 m of ice, destabilising 780 781 the ice front, and 500 years to remove the lowest 150 m of ice, destabilising the eastern half of LCIS. These timescales are extremely uncertain because the the-ocean processes driving 782 melting and freezing are unknown and thus-impossible to project. Counter intuitively, 783 784 increased ice-shelf melting could actually increase the meltwater-driven ocean currents and increase their marine ice deposition downstream [Holland et al., 2009]. If marine ice deposition 785 were to cease altogether, it would take 400-500 years to remove the existing marine ice from 786 787 LCIS solely by lateral ice advection and iceberg calving.

788

789 5.2.4 Collapse of Scar Inlet<u>remnant LBIS</u>

790 Albrecht and Levermann (2014) propose that an ice-shelf-the collapse of any ice shelf-can destabilise neighbouring ice shelves by changing their stress regime. For In the context of 791 LCIS, this translates into the risk that a the collapse of LBIS collapse could removes buttressing 792 by ungrounding ice alongacross Jason Peninsula. When the majority of LBIS collapsed in 2002, 793 794 a remnant ice shelf was left immediately adjacent to LCIS (Figure 9a). . Scar Inlet, the last 795 remaining part of LBIS, This ice is presumably accelerating and apparently weakening (Khazendar et al., in press)at risk of disintegration, so we assess consider the impact upon LCIS 796 797 of this possibility of its potential removal on LCIS. Jason Peninsula anchors a large area of 798 stagnant ice that is a significant stabilising influence on both LCIS and Scar Inlet the remnant LBIS (Figure 9a). The ice dividingbetween LCIS and Scar InletLBIS, Phillipi Rise, is poorly 799 surveyed but appears to be well-grounded at present, with ice 150 m above floatation 800

(calculated using 5 m firn air from Holland et al. (2011), EIGEN-6C geoid, and mean dynamic
ocean topography of -1 m; Figure 9b). However, the ice base is hundreds of metres below sea
level in places (Figure 9c), so if the remnant LBIS were to collapse it is possible there is
certainly the possibility that subsequent ice thinning could unground Phillipi Rise, removing
buttressing from LCIS and opening a new oceanographic pathway through Jason Peninsula.
The timescale for such a possibility is impossible to predict and, However, given the stagnant
nature of this ice, it is unclear to what extent this would influence LCIS stability.

808

809 5.2.5 Ungrounding from Bawden Ice Rise

810 Of far greater concern is the stability of Bawden Ice Rise. An ungrounding from Bawden Ice 811 Rise would prompt significant acceleration of the ice shelfLCIS (Borstad et al., 2013) and re-812 organisation of its strain rate field, probably destabilising the ice front (Kulessa et al., 2014). Bawden The ice rise is only a few kilometres across, but has a significant noticeable effect upon 813 the flow and structure of the ice shelf (Figure 10a). Three radar survey lines show that 814 815 Bawdenthe ice rise is very lightly grounded in the north, but approximately 40 m above floatation at its summit in the south (Figure 10b), where the ice base is about 150 m below sea 816 level (Figure 10c). (Height above floatation is calculated using a 10 m firn air content derived 817 from nearby surveyed floating ice and finding elevation relative to sea level using nearby 818 surveyed open water.) Our ice loss estimate of 0.3 m/y would take 130 years to unground 819 820 Bawdenthe ice rise entirely, but this timescale is subject to great uncertainty, including the ice loss estimate itself, its applicability to this region, and itsthe projection -of this rate-into the 821 future. It is almost certainly an upper bound because lowering is rapid in the region (Figure 1) 822 823 and Bawden would cease to provide a significant stabilising influence, and may even destabilise the ice front, long before the ice actually ungrounds through thinning. For example, 824 Doake and Vaughan (1991) showed that ice rises destabilised Wordie Ice Shelf by acteding as 825

an 'indenting wedge' during the retreat of <u>Wordie Ice Shelf.its ice front</u>. A large calving <u>occurred</u> south of Bawden between late December 2004 and early January 2005 and the ongoing thinning (Paolo et al., in press)_and acceleration (Khazendar et al., 2011)<u>in in the</u> regionthis region might evencould indicate that ungrounding from Bawden is<u>already</u> underway.

831

832 **5.2.6** Crevassing weakens shear zones

833 Whatever its source, the ongoing thinning and acceleration of LCIS could ultimately cause its 834 demise by weakening the structural integrity of the ice shelf. LAIS and LBIS both accelerated before collapsing (Bindschadler et al., 1994; Rignot et al., 2004), and LBIS apparently 835 collapsed after weakening of the shear zones between ice flow units (Khazendar et al., 2007; 836 837 Vieli et al., 2007; Glasser and Scambos, 2008). The shear zones in the north of LCIS are slowermoving and not soless strongly sheared (Khazendar et al., 2011) and hence more stable, but the 838 ice is already quite damaged (Jansen et al., 2010; McGrath et al., 2012; Borstad et al., 2013). 839 840 The uncertainties in this interaction are large and we are unable to assess a timescale for this risk. 841

842

843 **6.** Conclusions

We analyse eight repeated radar surveys between 1998 and 2012 along a nearly meridional line that traverses the centre of Larsen C Ice Shelf (LCIS), applying a novel method to derive the separate ice and air losses along this line contributing to the known lowering of the ice shelf. The uncertainties are considerable, but our primary estimate is that the lowering (0.066 ± 0.017 m/y, or 0.99 ± 0.26 m) is caused by both ice loss (0.28 ± 0.18 m/y, or 4.2 ± 2.7 m) and firn air loss (0.037 ± 0.026 m/y, or 0.56 ± 0.39 m). Though their effect on the surface lowering is approximately equal because the ice is floating, ice loss is an order of magnitude larger than air loss and so the results suggest that ice loss is the dominant change affecting LCIS. The
derivation of these values allows us to speculate upon the possible sources of the changes, and
their future implications.

854

The ice loss we observe could be explained by above-balance basal melting and/or ice divergence, and the air loss could be explained by below-balance accumulation <u>and/or</u> abovebalance surface melting and/or compaction. We conclude that at least two different forcings caused the lowering of LCIS during our survey period. The surveys do not sample the most rapid ice-shelf lowering in northern LCIS and it is likely that the balance of ice and air losses, and their driving mechanisms, varies for different regions and periods.

861

862 We conceive several interconnected mechanisms by which LCIS stability could be compromised, and our ice and air loss rates suggest typical timescales for LCIS collapse of a 863 few centuries. The two mechanisms that offer the earliest possibility of collapse are a flow 864 865 perturbation arising from the ungrounding of LCIS from Bawden Ice Rise, and ice-front retreat past a 'compressive arch' in strain rates, . Ice lowering is now focussed around Bawden Ice 866 Rise (Paolo et al., in press), and the anomalous propagation of a rift in the south of LCIS may 867 threaten the compressive arch (Jansen et al., 2015), suggesting that the stability of Bawden Ice 868 Rise and calving from the ice fronteither mechanism could pose an imminent risk and both 869 870 should be monitored closely.

871

872 Acknowledgements

873

We gratefully acknowledge the vital contribution of many dedicated field-workers and support staff in enabling the radar and satellite campaigns underpinning this study. The imagery in

- Figure 10 was provided by the Polar Geospatial Centre-Center at the University of Minnesota
 under NSF OPP agreement ANT-1043681. Laurie Padman is gratefully acknowledged for
 providing the satellite radar altimetry data and much useful advice.
- 879

880 **References**

- Albrecht, T., and Levermann, A.: Spontaneous ice-front retreat caused by disintegration of
 adjacent ice shelf in Antarctica, Earth and Planetary Science Letters, 393, 26-30, DOI
 10.1016/j.epsl.2014.02.034, 2014.
- Arcone, S. A.: Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley
 Ice Field, Alaska, USA, Journal of Glaciology, 48, 317-334, Doi
 10.3189/172756502781831412, 2002.
- Banwell, A. F., MacAyeal, D., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf
 triggered by chain reaction drainage of supraglacial lakes, Geophysical Research Letters,
 40, 5872-5876, 10.1002/2013GL057694, 2013.
- 890 Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Munneke, P. K., van den Broeke,
- M. R., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from
 observations and regional climate modeling, Journal of Geophysical Research-Earth
 Surface, 118, 315-330, 10.1029/2012jf002559, 2013.
- Bathmann, U., Smetacek, V., de Baar, H., Fahrbach, E., and Krause, G.: The expeditions
 ANTARKTIS X/6-8 of the research vessel "POLARSTERN" in 1992/93, AlfredWegener-Institut, Bremerhaven, Germany, 236 pp, 1994.
- 897 Berthier, E., Scambos, T. A., and Shuman, C. A.: Mass loss of Larsen B tributary glaciers
- 898 (Antarctic Peninsula) unabated since 2002, Geophysical Research Letters, 39, L13501,
- 899 10.1029/2012gl051755, 2012.

- Bindschadler, R. A., Fahnestock, M. A., Skvarca, P., and Scambos, T. A.: Surface-Velocity
 Field of the Northern Larsen Ice Shelf, Antarctica, Annals of Glaciology, Vol 20, 1994,
 20, 319-326, Doi 10.3189/172756494794587294, 1994.
- Borstad, C. P., Rignot, E., Mouginot, J., and Schodlok, M. P.: Creep deformation and
 buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf,
 The Cryosphere, 7, 1931-1947, 10.5194/tc-7-1931-2013, 2013.
- Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., and Makinson,
 K.: Seabed topography beneath Larsen C Ice Shelf from seismic soundings, The
 Cryosphere, 8, 1-13, 10.5194/tc-8-1-2014, 2014.
- Cook, A. J., and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic
 Peninsula over the past 50 years, The Cryosphere, 4, 77-98, 10.5194/Tc-4-77-2010,
 2010.
- Doake, C. S. M., and Vaughan, D. G.: Rapid Disintegration of the Wordie Ice Shelf in Response
 to Atmospheric Warming, Nature, 350, 328-330, 10.1038/350328a0, 1991.
- Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P., and Young, N. W.: Breakup and
 conditions for stability of the northern Larsen Ice Shelf, Antarctica, Nature, 391, 778780, Doi 10.1038/35832, 1998.
- Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring,
 J., Gilbert, R., and Prentice, M.: Stability of the Larsen B ice shelf on the Antarctic
 Peninsula during the Holocene epoch, Nature, 436, 681-685, 10.1038/Nature03908,
 2005.
- Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., and
 Fleming, A. H.: Pine Island Glacier ice shelf melt distributed at kilometre scales, The
 Cryosphere Discussions, 2013.

- Fricker, H. A., and Padman, L.: Thirty years of elevation change on Antarctic Peninsula ice
 shelves from multimission satellite radar altimetry, Journal of Geophysical ResearchOceans, 117, C02026, 10.1029/2011jc007126, 2012.
- Glasser, N. F., and Scambos, T. A.: A structural glaciological analysis of the 2002 Larsen B
 ice-shelf collapse, Journal of Glaciology, 54, 3-16, Doi 10.3189/002214308784409017,
 2008.
- Griggs, J. A., and Bamber, J. L.: Ice shelf thickness over Larsen C, Antarctica, derived from
 satellite altimetry, Geophysical Research Letters, 36, L19501, 10.1029/2009gl039527,
 2009.
- Haug, T., Kaab, A., and Skvarca, P.: Monitoring ice shelf velocities from repeat MODIS and
 Landsat data a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10
 other ice shelves around Antarctica, The Cryosphere, 4, 161-178, 10.5194/tc-4-1612010, 2010.
- Hellmer, H. H., Huhn, O., Gomis, D., and Timmermann, R.: On the freshening of the
 northwestern Weddell Sea continental shelf, Ocean Science, 7, 305-316, 10.5194/os-7305-2011, 2011.
- Holland, P. R., Corr, H. F. J., Vaughan, D. G., Jenkins, A., and Skvarca, P.: Marine ice in
 Larsen Ice Shelf, Geophysical Research Letters, 36, L11604, 10.1029/2009gl038162,
 2009.
- Holland, P. R., Jenkins, A., and Holland, D. M.: Ice and ocean processes in the Bellingshausen
 Sea, Antarctica, Journal of Geophysical Research-Oceans, 115, C05020,
 10.1029/2008jc005219, 2010.
- Holland, P. R., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern, R. J., Jenkins, A., and
- 947 Tedesco, M.: The air content of Larsen Ice Shelf, Geophysical Research Letters, 38,
 948 L10503, 10.1029/2011gl047245, 2011.

- Jansen, D., Kulessa, B., Sammonds, P. R., Luckman, A., King, E. C., and Glasser, N. F.:
 Present stability of the Larsen C ice shelf, Antarctic Peninsula, Journal of Glaciology,
 56, 593-600, Doi 10.3189/002214310793146223, 2010.
- Jansen, D., Luckman, A., Kulessa, B., Holland, P. R., and King, E. C.: Marine ice formation in
 a suture zone on the Larsen C Ice Shelf and its influence on ice shelf dynamics, Journal
- 954 of Geophysical Research-Earth Surface, 118, 1628-1640, Doi 10.1002/Jgrf.20120, 2013.
- Jansen, D., Luckman, A. J., Cook, A., Bevan, S., Kulessa, B., Hubbard, B., and Holland, P. R.:
 Newly developing rift in Larsen C Ice Shelf presents significant risk to stability, The
- 957 Cryosphere Discussions, 9, 861-872, 10.5194/tcd-9-861-2015, 2015.
- Jullion, L., Garabato, A. C. N., Meredith, M. P., Holland, P. R., Courtois, P., and King, B. A.:
 Decadal Freshening of the Antarctic Bottom Water Exported from the Weddell Sea,
 Journal of Climate, 26, 8111-8125, 10.1175/Jcli-D-12-00765.1, 2013.
- Khazendar, A., Rignot, E., and Larour, E.: Larsen B Ice Shelf rheology preceding its
 disintegration inferred by a control method, Geophysical Research Letters, 34, L19503,
 10.1029/2007gl030980, 2007.
- Khazendar, A., Rignot, E., and Larour, E.: Acceleration and spatial rheology of Larsen C Ice
 Shelf, Antarctic Peninsula, Geophysical Research Letters, 38, L09502,
 10.1029/2011gl046775, 2011.
- Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., and van den
 Broeke, M. R.: Observed thinning of Totten Glacier is linked to coastal polynya
 variability, Nature Communications, 4, 2857, 10.1038/Ncomms3857, 2013.
- Khazendar, A., Borstad, C. P., Scheuchl, B., Rignot, E., and Seroussi, H.: The evolving
 instability of the remnant Larsen B Ice Shelf and its tributary glaciers, Earth and
 Planetary Science Letters, 10.1016/j.epsl.2015.03.014, in press.

- King, M. A., and Padman, L.: Accuracy assessment of ocean tide models around Antarctica,
 Geophysical Research Letters, 32, L23608, 10.1029/2005gl023901, 2005.
- 975 Kuipers Munneke, P., Picard, G., van den Broeke, M. R., Lenaerts, J. T. M., and van Meijgaard,
- 976 E.: Insignificant change in Antarctic snowmelt volume since 1979, Geophysical
 977 Research Letters, 39, L01501, 10.1029/2011gl050207, 2012a.
- 978 Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-
- 979 surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The
 980 Cryosphere, 6, 353-363, 10.5194/tc-6-353-2012, 2012b.
- 981 Kuipers Munneke, P., Ligtenberg, S. R. M., van den Broeke, M. R., and Vaughan, D. G.: Firn
- air depletion as a precursor of Antarctic ice-shelf collapse, Journal of Glaciology, 60,
 205-214, Doi 10.3189/2014jog13j183, 2014.
- Kulessa, B., Jansen, D., Luckman, A. J., King, E. C., and Sammonds, P. R.: Marine ice
 regulates the future stability of a large Antarctic ice shelf, Nature Communications, 5,
 3707, 10.1038/Ncomms4707, 2014.
- 987 Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., and Munneke,
- 988 P. K.: A new, high-resolution surface mass balance map of Antarctica (1979-2010) based
- 989 on regional atmospheric climate modeling, Geophysical Research Letters, 39, L04501,
 990 10.1029/2011gl050713, 2012.
- 991 Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Munneke, P. K., King, J. C., and Barrand,
- N. E.: Surface melt and ponding on Larsen C Ice Shelf and the impact of foehn winds,
 Antarctic Science, 26, 625-635, 2014.
- Marshall, G. J., Orr, A., van Lipzig, N. P. M., and King, J. C.: The impact of a changing
 Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures,
 Journal of Climate, 19, 5388-5404, 10.1175/Jcli3844.1, 2006.

997	McGrath, D., Steffen, K., Scambos, T., Rajaram, H., Casassa, G., and Lagos, J. L. R.: Basal									
998	crevas	sses and	d ass	ociated surf	ace crevassing	g on the L	arsen	C ice shelf, A	Antarct	ica, and
999	their	role	in	ice-shelf	instability,	Annals	of	Glaciology,	53,	10-18,
1000	10.31	89/2012	2aoge	50a005, 201	2.					

- 1001 McGrath, D., Steffen, K., Holland, P. R., Scambos, T., Rajaram, H., Abdalati, W., and Rignot,
- E.: The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica, Journal
 of Geophysical Research-Earth Surface, 119, 588-602, 10.1002/2013jf002935, 2014.
- Morris, E. M., and Vaughan, D. G.: Spatial and temporal variation of surface temperature on
 the Antarctic Peninsula and the limit of viability of ice shelves, Antarctic Peninsula
 Climate Variability: Historical and Paleoenvironmental Perspectives, 79, 61-68, 2003.
- 1007 Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H. A., and King, M.
- A.: Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf,
 Antarctica, Journal of Geophysical Research-Oceans, 117, C05005,
 10.1029/2011jc007263, 2012.
- Nicholls, K. W., Pudsey, C. J., and Morris, P.: Summertime water masses off the northern
 Larsen C Ice Shelf, Antarctica, Geophysical Research Letters, 31, L09309,
 10.1029/2004gl019924, 2004.
- Nicholls, K. W., Makinson, K., and Venables, E. J.: Ocean circulation beneath Larsen C Ice
 Shelf, Antarctica from in situ observations, Geophysical Research Letters, 39, L19608,
 1016 10.1029/2012gl053187, 2012.
- Padman, L., King, M., Goring, D., Corr, H., and Coleman, R.: Ice-shelf elevation changes due
 to atmospheric pressure variations, Journal of Glaciology, 49, 521-526, Doi
 1019 10.3189/172756503781830386, 2003.
- 1020 Padman, L., Costa, D. P., Dinniman, M. S., Fricker, H. A., Goebel, M. E., Huckstadt, L. A.,
- 1021 Humbert, A., Joughin, I., Lenaerts, J. T. M., Ligtenberg, S. R. M., Scambos, T., and van

- den Broeke, M. R.: Oceanic controls on the mass balance of Wilkins Ice Shelf,
 Antarctica, Journal of Geophysical Research-Oceans, 117, C01010,
 1024 10.1029/2011jc007301, 2012.
- Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice shelves isaccelerating, Science, in press.
- 1027 Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R.,
- and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature,
 484, 502-505, 10.1038/Nature10968, 2012.
- 1030 Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice
- discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf,
 Geophysical Research Letters, 31, L18401, 10.1029/2004gl020697, 2004.
- 1033 Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333,
 1034 1427-1430, 10.1126/science.1208336, 2011.
- 1035 Rye, C. D., Naveira Garabato, A. C., Holland, P. R., Meredith, M. P., Nurser, A. J. G., Hughes,
- C. W., Coward, A. C., and Webb, D. J.: Evidence of increased glacial melt in Antarctic
 coastal sea level rise, Nature Geoscience, 7, 732-735, doi:10.1038/ngeo2230, 2014.
- 1038 Scambos, T. A., Hulbe, C., and Fahnestock, M.: Climate-induced ice shelf disintegration in the
- Antarctic Peninsula, Antarctic Peninsula Climate Variability: Historical and
 Paleoenvironmental Perspectives, 79, 79-92, 2003.
- 1041 Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and Bohlander, J.: MODIS-
- 1042 based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and
- 1043 snow grain size, Remote Sensing of Environment, 111, 242-257, DOI
- 1044 10.1016/j.rse.2006.12.020, 2007.
- Shepherd, A., Wingham, D., Payne, T., and Skvarca, P.: Larsen Ice Shelf has progressively
 thinned, Science, 302, 856-859, 10.1126/science.1089768, 2003.

- Shepherd, A., Wingham, D., and Rignot, E.: Warm ocean is eroding West Antarctic Ice Sheet,
 Geophysical Research Letters, 31, L23402, 10.1029/2004gl021106, 2004.
- Shepherd, A., Wingham, D., Wallis, D., Giles, K., Laxon, S., and Sundal, A. V.: Recent loss
 of floating ice and the consequent sea level contribution, Geophysical Research Letters,
 37, L13503, 10.1029/2010gl042496, 2010.
- 1052 Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K.
- 1053 H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King,
- 1054 M. A., Lenaerts, J. T. M., Li, J. L., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B.,
- 1055 McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J.,
- 1056 Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A.,
- 1057 Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de
- 1058 Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse,
- 1059 P. L., Wingham, D. J., Yi, D. H., Young, D., and Zwally, H. J.: A Reconciled Estimate
- 1060 of Ice-Sheet Mass Balance, Science, 338, 1183-1189, 10.1126/science.1228102, 2012.
- 1061 Tedesco, M.: Assessment and development of snowmelt retrieval algorithms over Antarctica
- 1062 from K-band spaceborne brightness temperature (1979-2008), Remote Sensing of 1063 Environment, 113, 979-997, 10.1016/j.rse.2009.01.009, 2009.
- Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and van den Broeke, M. R.: Satellitebased estimates of Antarctic surface meltwater fluxes, Geophysical Research Letters, 40,
 6148-6153, 10.1002/2013gl058138, 2013.
- 1067 Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins,
- 1068 A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H.,
- 1069 Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson-Delmotte, V., Mayewski,
- 1070 P., Navarro, F., Robinson, S., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K.,

- and Klepikov, A.: Antarctic climate change and the environment: an update, Polar
 Record, 50, 237-259, Doi 10.1017/S0032247413000296, 2014.
- Valisuo, I., Vihma, T., and King, J. C.: Surface energy budget on Larsen and Wilkins ice
 shelves in the Antarctic Peninsula: results based on reanalyses in 1989--2010, The
 Cryosphere, 8, 1519-1538, 10.5194/tc-8-1519-2014, 2014.
- van den Broeke, M.: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf,
 Geophysical Research Letters, 32, L12815, 10.1029/2005gl023247, 2005.
- 1078 van der Veen, C. J.: Fracture mechanics approach to penetration of surface crevasses on
- 1079 glaciers, Cold Regions Science and Technology, 27, 31-47, Doi 10.1016/S01651080 232x(97)00022-0, 1998.
- Vieli, A., Payne, A. J., Shepherd, A., and Du, Z.: Causes of pre-collapse changes of the Larsen
 B ice shelf: Numerical modelling and assimilation of satellite observations, Earth and
 Planetary Science Letters, 259, 297-306, DOI 10.1016/j.epsl.2007.04.050, 2007.
- 1084 Wingham, D. J., Wallis, D. W., and Shepherd, A.: Spatial and temporal evolution of Pine Island
- 1085 Glacier thinning, 1995-2006, Geophysical Research Letters, 36, L17501,
 1086 10.1029/2009gl039126, 2009.

Dete	Origin	Dlatform	Los Sounding Pader	Ice	
Date	Oligin	Flationin	ice-sounding Kadar	Elevation	
20 Eab 1008	BAS-	Twin	150 MHz ^a	radar	
20-1'00-1998	Argentine	otter		altimeter ^a	
26-Nov-2002	NASA-CECS	P-3	ICORDS2 140-160 MHz ^b	laser ATM ^c	
29-Nov-2004	NASA-CECS	P-3	ACORDS 140-160 MHz ^b	laser ATM ^c	
04 Nov 2000	NASA		MCoPDS 100 200 MHz* b.d	laser ATM ^c	
04-1107-2009	IceBridge	DC-0	WEORDS 190-200 WITZ		
19—21-Nov-2009	McGrath	Sledge	25 MHz ^e	GPS ^e	
13 Nov 2010	NASA	DC 8	MCoPDS 190 200 MHz ^{b,d}	laser ATM ^c	
13-1107-2010	IceBridge	DC-0	MCORDS 190-200 MIIZ	Iasel ATIVI	
27 Jap 2011	BAS	Twin	150 MHz	radar	
2/-Jan-2011	DAS	otter		altimeter	
13—14-Dec-2012	Brisbourne	Sledge	50 MHz	GPS	

^{-a} Holland et al. (2009);

1090 ^b https://data.cresis.ku.edu/#RDS;

1091 ^c http://nsidc.org/data/ilatm2;

- 1092 ^d http://nsidc.org/data/irmcr2.html;
- ^e McGrath et al. (2014).

1094 *Data neglected due to transmit/receive switch problem; see section 2.4<u>3</u>.

1095

Table 1: Details of the radio-echo sounding and altimeter surveys used in this analysis.

2000	elevation	TWTT	ice	air	
Case	(m/y)	(m ice year ⁻¹)	(m/y)	(m/y)	
Reference	-0.0660	-0.296	-0.274	-0.0367	
Using satellite altimetry	-0.0616	-0.296	-0.277	-0.0320	
BAS only ^a	-0.0752	-0.264	-0.235	-0.0500	
NASA only ^b	-0.0303	0.087	0.110	-0.0421	
Without 1998	-0.0311	-0.041	-0.025	-0.0285	
Without 2002	-0.0694	-0.389	-0.371	-0.0297	
Without 2004	-0.0713	-0.281	-0.256	-0.0439	
Without 2009 MG	-0.0654	-0.195	-0.168	-0.0474	
Without 2010	-0.0648	-0.351	-0.334	-0.0290	
Without 2011	-0.0695	-0.394	-0.377	-0.0292	
With 2009 IB TWTT	-0.0660	-0.482	-0.471	-0.0155	
With 2012	-0.0670	-0.212	-0.185	-0.0473	
Uncertainty (see text)	0.017	0.17	0.18	0.026	

1097 ^aAll 1998 and 2011 data

^bAll 2002, 2004, 2010 data and elevation for IceBridge 2009.

1099

Table 2: Elevation and TWTT trends and their derived ice and air trends from calculations

1101 performed using different combinations of data. TWTT trends are expressed as solid-ice

thickness equivalent. Trends in bold are smaller than the derived uncertainty (see main text).

survey	elevatio	on differen	ces from 2	004 (m)	TWTT differences from 2004 (m ice)			
	count	mean	stddev	stderr	count	mean	stddev	stderr
1998	2213	0.993	1.365	0.029	1382	2.320	7.507	0.202
2002	5092	0.376	1.329	0.019	952	-3.384	9.365	0.304
2004	6097	0	0	0	18385	0	0	0
2009 MG	8731	-0.013	1.726	0.019	4385	-5.441	9.501	0.144
2009 IB <u>*</u>	4779	0.215	1.139	0.017	4444	-11.62	11.91	0.179
2010	4461	-0.088	1.836	0.028	5317	-1.784	9.847	0.135
2011	12126	0.020	1.573	0.014	9190	-1.097	9.802	0.102
2012	303	-0.225	2.401	0.138	187	-0.976	9.651	0.706

*TWTT data neglected due to transmit/receive switch problem; see section 2.3.

1104

Table 3: Statistics of the differences between all data from each survey and their nearest 2004

analogue, as shown in Figure 4. TWTT is expressed as solid-ice thickness equivalent.

Figure 1: MODIS Mosaic of Antarctica imagery of LCIS (Scambos et al., 2007) showing the location of satellite radar altimeter crossovers and estimated surface lowering rates (updated from Fricker and Padman, 2012, as described in section 2.5) for two periods. a) 1994—2011, the full period for which ERS-1/2 and Envisat data are reliable; b) 1998—2011, the period for which we have radar surveys. The main survey line is shown in red, with the 2012 survey shown in yellow. Panel b shows geographical features referred to in the text: B: Bawden Ice Rise; C: Churchill Peninsula; J: Jason Peninsula; K: Kenyon Peninsula.

Figure 2: Processed data from the eight surveys, from which the air and ice thickness changes are derived. a) Surface elevation relative to WGS84 ellipsoid. b) Radar two-way travel time (TWTT), expressed as an equivalent thickness of solid ice. c) Difference between each elevation observation and nearest 2004 analogue. d) Difference between each TWTT observation and nearest 2004 analogue.

1122 Figure 3: Correctionalibration of the elevation data in the 2011 BAS airborne survey. Blue 1123 dots showindicate the differences between uncorrected elevations derived from BAS radar 1124 altimetry elevations on 27 January 2011 and and from IceBridge laser altimetry elevations on 1125 13 November 2010 (using the sign convention 2011 minus 2010). The 2011 survey data need 1126 to be calibrated and also have radar firn penetration removed. Assuming negligible elevation change over the intervening ~10 weeks between surveys, the 2011 data need to be corrected are 1127 1128 first calibrated by subtracting everywhere an constant offset of 1.59 m (red line; the mean difference from 2010 for all data north of 67.85 °S). After this calibration, South of 67.85 °S, 1129 1130 the 2011 data are become progressively lower than 2010 south of 67.85 °S, which is attributed 1131 to increasing radar penetration of the firn (Holland et al., 2011). In this region we add an additional penetration correction equal to the difference between the red and magenta lines. 1132 1133 This penetration correction is also applied to the 1998 BAS radar altimeter data. Green dots 1134 show the difference between the -corrected 20110 data and the corrected 20101 data.

Figure 4: Inter-survey differences in elevation, TWTT, ice and air. Mean differences between 1136 1137 each survey and 2004 for elevation are shown in green and for radar two-way travel time 1138 (TWTT; ice equivalent) in red. Error bars represent 95% confidence intervals of the population of differences from 2004, and dashed lines represent linear trend lines. The 2004 elevation and 1139 TWTT are both shown as zero, with zero error. The elevation trend derived from satellite radar 1140 altimetry is also shown in cyan. Trends in ice thickness (black) and air thickness (blue) 1141 thickness aare derived directly from the trends in TWTT and elevation, revealing that LCIS 1142 has lost both ice and air over the period surveyed. Elevation and air thickness use the left axis, 1143 while TWTT and ice thickness are plotted with absolute values on the right axis and equivalent 1144 1145 surface elevation on the left axis. (see section 4).

1146

Figure 5: Spatial variation in derived quantities along the survey line within latitude bins centred upon the locations of the satellite cross-over points (see Figure 1b). a) Trends in elevation (green), TWTT (red; ice equivalent), and air (black) and ice (blue) thickness, showing significant ice and air loss. Elevation trends derived from satellite radar altimetry at the crossovers are cyan. Elevation and air thickness use the left axis, while TWTT and ice thickness are plotted with absolute values on the right axis and equivalent surface elevation on the left

axis. b) Spatial variation in ice mass budget. Divergence balances accumulation, and ice
thinning must be dominated by is similar to unbalanced basal melting. Values in the legends
represent means over all bins.

Figure 6: Data and trends for the five latitude bins defined by the satellite altimetry crossovers,labelled with the latitude of the accompanying crossover. Data points show the mean and 95%

confidence intervals of the differences between each survey and the 2004 baseline for surface elevation (green) and TWTT (red, expressed as solid-ice equivalent). The satellite-altimeter derived elevation trend for the crossover at the centre of each bin is also shown (cyan).
Surveyed trends in elevation and TWTT are converted to trends in ice (black) and air (blue) thickness. Elevation and air thickness are plotted on the left-hand axis, while TWTT and ice thickness are plotted such that the right-hand axis shows absolute values and the left-hand axis shows the equivalent surface elevation.

1166

Figure 7: Version of Figure 5 in which the binned survey elevation trends are replaced by satellite crossover elevation trends. a) Spatial variation of trends in elevation (green), TWTT (red, ice equivalent), and air (black) and ice (blue) thickness. Satellite crossover trends are cyan. Elevation and air thickness use the left axis, while TWTT and ice thickness are plotted with absolute values on the right axis and equivalent surface elevation on the left axis. b) Meridional variation in ice mass budget.

Figure 8: Fields of derived values for the terms in the ice-only mass balance (positive implies melting). a) ice divergence $(-I\nabla, \mathbf{u})$; b) ice advection $(-\mathbf{u}, \nabla I)$; c) ice surface accumulation; d) derived steady-state basal melting. Panel c shows geographical features referred to in the text: B: Bawden Ice Rise; C: Churchill Peninsula; K: Kenyon Peninsula.

Figure 9: Northern LCIS and Jason Peninsula, showing various quantities overlain on MODIS
Mosaic of Antarctica (Scambos et al., 2007). a) ice flow speed (Rignot et al., 2011); b) height

- 1181 of ice surface above hydrostatic floatation; c) elevation of ice base relative to sea level. Bawden
- 1182 Ice Rise is labelled B and Phillipi Rise is labelled P.

Figure 10: High-resolution WorldView2 satellite imagery of Bawden Ice Rise acquired 15th
October 2012 (copyright Digital Globe) with various quantities overlain. a) ice flow speed

- 1186 (Rignot et al., 2011); b) height of ice surface above hydrostatic floatation; c) elevation of ice
- 1187 base relative to sea level.