Articles | Volume 8, issue 4
https://doi.org/10.5194/tc-8-1607-2014
https://doi.org/10.5194/tc-8-1607-2014
Research article
 | 
28 Aug 2014
Research article |  | 28 Aug 2014

Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation

R. Ricker, S. Hendricks, V. Helm, H. Skourup, and M. Davidson

Related authors

Drift-aware sea ice thickness maps from satellite remote sensing
Robert Ricker, Thomas Lavergne, Stefan Hendricks, Stephan Paul, Emily Down, Mari Anne Killie, and Marion Bocquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-359,https://doi.org/10.5194/egusphere-2025-359, 2025
Short summary
SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea
Lars Kaleschke, Xiangshan Tian-Kunze, Stefan Hendricks, and Robert Ricker
Earth Syst. Sci. Data, 16, 3149–3170, https://doi.org/10.5194/essd-16-3149-2024,https://doi.org/10.5194/essd-16-3149-2024, 2024
Short summary
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023,https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023,https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary

Related subject area

Remote Sensing
Inland migration of near-surface crevasses in the Amundsen Sea Sector, West Antarctica
Andrew O. Hoffman, Knut Christianson, Ching-Yao Lai, Ian Joughin, Nicholas Holschuh, Elizabeth Case, Jonathan Kingslake, and the GHOST science team
The Cryosphere, 19, 1353–1372, https://doi.org/10.5194/tc-19-1353-2025,https://doi.org/10.5194/tc-19-1353-2025, 2025
Short summary
Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025,https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Greenland Ice Sheet surface roughness from Ku- and Ka-band radar altimetry surface echo strengths
Kirk M. Scanlan, Anja Rutishauser, and Sebastian B. Simonsen
The Cryosphere, 19, 1221–1239, https://doi.org/10.5194/tc-19-1221-2025,https://doi.org/10.5194/tc-19-1221-2025, 2025
Short summary
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025,https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary

Cited articles

Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Andersen, O. B.: The DTU10 Gravity field and Mean sea surface, second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska, 20–22 September 2010, 2010.
Armitage, T. and Davidson, M.: Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals, IEEE T. Geosci. Remote, 52, 529–536, https://doi.org/10.1109/TGRS.2013.2242082, 2014.
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hossetnmostafa, A. R., Jezek, K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory measurements of radar backscatter from bare and snow-covered saline ice sheets, Int. J. Remote Sens., 16, 851–876, https://doi.org/10.1080/01431169508954448, 1995.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, ISPRS Int. J. Geo-Inform,, 1, 32–45, https://doi.org/10.3390/ijgi1010032, 2012.
Download
Share