Articles | Volume 7, issue 2
https://doi.org/10.5194/tc-7-681-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-681-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Influence of ablation-related processes in the build-up of simulated Northern Hemisphere ice sheets during the last glacial cycle
S. Charbit
IPSL/Laboratoire des sciences du climat et de l'environnement, UMR CEA-CNRS-UVSQ 8212, CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette cedex, France
C. Dumas
IPSL/Laboratoire des sciences du climat et de l'environnement, UMR CEA-CNRS-UVSQ 8212, CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette cedex, France
M. Kageyama
IPSL/Laboratoire des sciences du climat et de l'environnement, UMR CEA-CNRS-UVSQ 8212, CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette cedex, France
D. M. Roche
IPSL/Laboratoire des sciences du climat et de l'environnement, UMR CEA-CNRS-UVSQ 8212, CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette cedex, France
UJF – Grenoble 1/CNRS, Laboratoire de glaciologie et de géophysique de l'environnement, UMR 5183, Grenoble, 38041, France
Related authors
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Victor van Aalderen, Sylvie Charbit, Christophe Dumas, and Aurélien Quiquet
Clim. Past, 20, 187–209, https://doi.org/10.5194/cp-20-187-2024, https://doi.org/10.5194/cp-20-187-2024, 2024
Short summary
Short summary
We present idealized numerical experiments to test the main mechanisms that triggered the deglaciation of the past Eurasian ice sheet. Simulations were performed with the GRISLI2.0 ice sheet model. The results indicate that the Eurasian ice sheet was primarily driven by surface melting, due to increased atmospheric temperatures. Basal melting below the ice shelves is only a significant driver if ocean temperatures increase by nearly 10 °C, in contrast with the findings of previous studies.
Nina Raoult, Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, and Vladislav Bastrikov
The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023, https://doi.org/10.5194/tc-17-2705-2023, 2023
Short summary
Short summary
Greenland ice sheet melting due to global warming could significantly impact global sea-level rise. The ice sheet's albedo, i.e. how reflective the surface is, affects the melting speed. The ORCHIDEE computer model is used to simulate albedo and snowmelt to make predictions. However, the albedo in ORCHIDEE is lower than that observed using satellites. To correct this, we change model parameters (e.g. the rate of snow decay) to reduce the difference between simulated and observed values.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Short summary
To provide reliable projections of the ice-sheet contribution to future sea-level rise, ice sheet models must be able to simulate the observed ice sheet present-day state. Using a low computational iterative minimisation procedure, based on the adjustment of the basal drag coefficient, we rapidly minimise the errors between the simulated and the observed Greenland ice thickness and ice velocity, and we succeed in stabilising the simulated Greenland ice sheet state under present-day conditions.
Sébastien Le clec'h, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, and Catherine Ritz
The Cryosphere, 13, 373–395, https://doi.org/10.5194/tc-13-373-2019, https://doi.org/10.5194/tc-13-373-2019, 2019
Short summary
Short summary
Quantifying the future contribution of the Greenland ice sheet (GrIS) to sea-level rise in response to atmospheric changes is important but remains challenging. For the first time a full representation of the feedbacks between a GrIS model and a regional atmospheric model was implemented. The authors highlight the fundamental need for representing the GrIS topography change feedbacks with respect to the atmospheric component face to the strong impact on the projected sea-level rise.
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, and C. Ritz
Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, https://doi.org/10.5194/cp-11-1467-2015, 2015
Short summary
Short summary
The present study investigates the potential impact of the North American ice sheet on the surface mass balance of the Eurasian ice sheet through changes in the past glacial atmospheric circulation. Using an atmospheric circulation model and an ice-sheet model, we show that the albedo of the American ice sheet favors the growth of the Eurasian ice sheet, whereas the topography of the American ice sheet leads to more ablation over North Eurasia, and therefore to a smaller Eurasian ice sheet.
D. M. Roche, C. Dumas, M. Bügelmayer, S. Charbit, and C. Ritz
Geosci. Model Dev., 7, 1377–1394, https://doi.org/10.5194/gmd-7-1377-2014, https://doi.org/10.5194/gmd-7-1377-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
Clim. Past, 21, 27–51, https://doi.org/10.5194/cp-21-27-2025, https://doi.org/10.5194/cp-21-27-2025, 2025
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance–retreat of ice sheets, we run a snow model, the BErgen Snow SImulator (BESSI), with transient climate forcing obtained from an Earth system model, iLOVECLIM, over Greenland and Antarctica during the Last Interglacial (LIG; 130–116 ka). Compared to the simple existing SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Aurélien Quiquet and Didier M. Roche
Clim. Past, 20, 1365–1385, https://doi.org/10.5194/cp-20-1365-2024, https://doi.org/10.5194/cp-20-1365-2024, 2024
Short summary
Short summary
In this work, we use the same experimental protocol to simulate the last two glacial terminations with a coupled ice sheet–climate model. Major differences among the two terminations are that the ice sheets retreat earlier and the Atlantic oceanic circulation is more prone to collapse during the penultimate termination. However, for both terminations the pattern of ice retreat is similar, and this retreat is primarily explained by orbital forcing changes and greenhouse gas concentration changes.
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024, https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary
Short summary
Stable water isotopes are used to infer changes in the hydrological cycle for different time periods in climatic archive and climate models. We present the implementation of the δ2H and δ17O water isotopes in the coupled climate model iLOVECLIM and calculate the d- and 17O-excess. Results of a simulation under preindustrial conditions show that the model correctly reproduces the water isotope distribution in the atmosphere and ocean in comparison to data and other global circulation models.
Victor van Aalderen, Sylvie Charbit, Christophe Dumas, and Aurélien Quiquet
Clim. Past, 20, 187–209, https://doi.org/10.5194/cp-20-187-2024, https://doi.org/10.5194/cp-20-187-2024, 2024
Short summary
Short summary
We present idealized numerical experiments to test the main mechanisms that triggered the deglaciation of the past Eurasian ice sheet. Simulations were performed with the GRISLI2.0 ice sheet model. The results indicate that the Eurasian ice sheet was primarily driven by surface melting, due to increased atmospheric temperatures. Basal melting below the ice shelves is only a significant driver if ocean temperatures increase by nearly 10 °C, in contrast with the findings of previous studies.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Nina Raoult, Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, and Vladislav Bastrikov
The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023, https://doi.org/10.5194/tc-17-2705-2023, 2023
Short summary
Short summary
Greenland ice sheet melting due to global warming could significantly impact global sea-level rise. The ice sheet's albedo, i.e. how reflective the surface is, affects the melting speed. The ORCHIDEE computer model is used to simulate albedo and snowmelt to make predictions. However, the albedo in ORCHIDEE is lower than that observed using satellites. To correct this, we change model parameters (e.g. the rate of snow decay) to reduce the difference between simulated and observed values.
Léa Terray, Emmanuelle Stoetzel, Eslem Ben Arous, Masa Kageyama, Raphaël Cornette, and Pascale Braconnot
Clim. Past, 19, 1245–1263, https://doi.org/10.5194/cp-19-1245-2023, https://doi.org/10.5194/cp-19-1245-2023, 2023
Short summary
Short summary
The reconstruction of paleoenvironments has long been a subject of great interest, particularly to study past biodiversity. Paleoenvironmental proxies often show inconsistencies, and age estimations can vary depending on the method used. We demonstrate the ability of paleoclimate simulations to address these discrepancies, illustrating the strong potential of our cross-disciplinary consistency approach to refine the context of archeological and paleontological sites.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023, https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Short summary
This paper simulates transcient Holocene climate in Europe by applying an interactive downscaling to the standard version of the iLOVECLIM model. The results show that downscaling presents a higher spatial variability in better agreement with proxy-based reconstructions as compared to the standard model, particularly in the Alps, the Scandes, and the Mediterranean. Our downscaling scheme is numerically cheap, which can perform kilometric multi-millennial simulations suitable for future studies.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022, https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary
Short summary
In past warm periods, the Sahara region was covered by vegetation. In this paper we study transitions from this
greenstate to the desert state we find today. For this purpose, we have used a global climate model coupled to a vegetation model to perform transient simulations. We analyzed the model results to assess the effect of vegetation shifts on the abruptness of the transition. We find that the vegetation feedback was more efficient during the last interglacial than during the Holocene.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Marie Sicard, Masa Kageyama, Sylvie Charbit, Pascale Braconnot, and Jean-Baptiste Madeleine
Clim. Past, 18, 607–629, https://doi.org/10.5194/cp-18-607-2022, https://doi.org/10.5194/cp-18-607-2022, 2022
Short summary
Short summary
The Last Interglacial (129–116 ka) is characterised by an increased summer insolation over the Arctic region, which leads to a strong temperature rise. The aim of this study is to identify and quantify the main processes and feedback causing this Arctic warming. Using the IPSL-CM6A-LR model, we investigate changes in the energy budget relative to the pre-industrial period. We highlight the crucial role of Arctic sea ice cover, ocean and clouds on the Last Interglacial Arctic warming.
Léa Terray, Masa Kageyama, Emmanuelle Stoetzel, Eslem Ben Arous, Raphaël Cornette, and Pascale Braconnot
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-185, https://doi.org/10.5194/cp-2021-185, 2022
Manuscript not accepted for further review
Short summary
Short summary
To reconstruct the paleoenvironmental and chronological context of archaeo/paleontological sites is a key step to understand the evolutionary history of past organisms. Paleoenvironmental proxies often show inconsistencies and age estimations can vary depending on the method used. We show the potential of paleoclimate simulations to address those discrepancies, illustrating the strong potential of our cross-disciplinary approach to refine the context of archaeo/paleontological sites.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1015–1030, https://doi.org/10.5194/tc-15-1015-2021, https://doi.org/10.5194/tc-15-1015-2021, 2021
Short summary
Short summary
We present here the GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for CMIP6 for Greenland. The project aims to quantify the ice sheet contribution to global sea level rise for the next century. We show an important spread in the simulated Greenland ice loss in the future depending on the climate forcing used. Mass loss is primarily driven by atmospheric warming, while oceanic forcing contributes to a relatively smaller uncertainty in our simulations.
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1031–1052, https://doi.org/10.5194/tc-15-1031-2021, https://doi.org/10.5194/tc-15-1031-2021, 2021
Short summary
Short summary
We present here the GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for CMIP6 for Antarctica. The project aims to quantify the ice sheet contribution to global sea level rise for the next century. We show that increased precipitation in the future in some cases mitigates this contribution, with positive to negative values in 2100 depending of the climate forcing used. Sub-shelf-basal-melt uncertainties induce large differences in simulated grounding-line retreats.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Short summary
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model design and physics are described, and benchmark simulations are provided to validate its performance. Yelmo is a versatile ice sheet model that can be applied to a wide variety of problems.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Lise Missiaen, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Claire Waelbroeck, Sylvain Pichat, and Jean-Yves Peterschmitt
Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, https://doi.org/10.5194/cp-16-867-2020, 2020
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Ning Tan, Camille Contoux, Gilles Ramstein, Yong Sun, Christophe Dumas, Pierre Sepulchre, and Zhengtang Guo
Clim. Past, 16, 1–16, https://doi.org/10.5194/cp-16-1-2020, https://doi.org/10.5194/cp-16-1-2020, 2020
Short summary
Short summary
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with the new boundary conditions are launched and analyzed based on the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM). Our results show that the warming in mid- to high latitudes enhanced due to the modifications of the land–sea mask and land–ice configuration. The pCO2 uncertainties within the records can produce asymmetrical warming patterns.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Short summary
To provide reliable projections of the ice-sheet contribution to future sea-level rise, ice sheet models must be able to simulate the observed ice sheet present-day state. Using a low computational iterative minimisation procedure, based on the adjustment of the basal drag coefficient, we rapidly minimise the errors between the simulated and the observed Greenland ice thickness and ice velocity, and we succeed in stabilising the simulated Greenland ice sheet state under present-day conditions.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Sébastien Le clec'h, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard, and Catherine Ritz
The Cryosphere, 13, 373–395, https://doi.org/10.5194/tc-13-373-2019, https://doi.org/10.5194/tc-13-373-2019, 2019
Short summary
Short summary
Quantifying the future contribution of the Greenland ice sheet (GrIS) to sea-level rise in response to atmospheric changes is important but remains challenging. For the first time a full representation of the feedbacks between a GrIS model and a regional atmospheric model was implemented. The authors highlight the fundamental need for representing the GrIS topography change feedbacks with respect to the atmospheric component face to the strong impact on the projected sea-level rise.
Aurélien Quiquet, Christophe Dumas, Catherine Ritz, Vincent Peyaud, and Didier M. Roche
Geosci. Model Dev., 11, 5003–5025, https://doi.org/10.5194/gmd-11-5003-2018, https://doi.org/10.5194/gmd-11-5003-2018, 2018
Short summary
Short summary
This paper presents the GRISLI (Grenoble ice sheet and land ice) model in its newest revision. We present the recent model improvements from its original version (Ritz et al., 2001), together with a discussion of the model performance in reproducing the present-day Antarctic ice sheet geometry and the grounding line advances and retreats during the last 400 000 years. We show that GRISLI is a computationally cheap model, able to reproduce the large-scale behaviour of ice sheets.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Olivier Passalacqua, Marie Cavitte, Olivier Gagliardini, Fabien Gillet-Chaulet, Frédéric Parrenin, Catherine Ritz, and Duncan Young
The Cryosphere, 12, 2167–2174, https://doi.org/10.5194/tc-12-2167-2018, https://doi.org/10.5194/tc-12-2167-2018, 2018
Short summary
Short summary
Locating a suitable drill site is a key step in the Antarctic oldest-ice challenge. Here we have conducted a 3-D ice flow simulation in the region of Dome C using a refined bedrock description. Five selection criteria are computed that together provide an objective overview on the local ice flow conditions. We delineate kilometer-scale favorable areas that overlap with the ones recently proposed by another group. We propose a few drill sites that should be surveyed during the next field seasons.
Marie G. P. Cavitte, Frédéric Parrenin, Catherine Ritz, Duncan A. Young, Brice Van Liefferinge, Donald D. Blankenship, Massimo Frezzotti, and Jason L. Roberts
The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, https://doi.org/10.5194/tc-12-1401-2018, 2018
Short summary
Short summary
We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, over the last 73 kyr. We use internal isochrones interpreted from ice-penetrating radar surveys and a 1-D ice flow model to invert for time-averaged and paleo-accumulation rates. We observe that surface accumulation patterns are stable through the last 73 kyr, consistent with current observed regional precipitation gradients and consistent interactions between prevailing winds and surface slope.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, and Didier Paillard
Geosci. Model Dev., 11, 453–466, https://doi.org/10.5194/gmd-11-453-2018, https://doi.org/10.5194/gmd-11-453-2018, 2018
Short summary
Short summary
Earth system models of intermediate complexity generally have a simplified model physics and a coarse model resolution. In this work we present the inclusion of an online dynamical downscaling of temperature and precipitation in such a model. This downscaling explicitly takes into account sub-grid topography. With this new model functionality we are able to simulate temperature and precipitation on a 40 km grid for the whole Northern Hemisphere from the native model resolution.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Olivier Passalacqua, Catherine Ritz, Frédéric Parrenin, Stefano Urbini, and Massimo Frezzotti
The Cryosphere, 11, 2231–2246, https://doi.org/10.5194/tc-11-2231-2017, https://doi.org/10.5194/tc-11-2231-2017, 2017
Short summary
Short summary
As the Dome C region is a key area for oldest-ice research, we need to better constrain the geothermal flux (GF) so that past basal melt rates are well constrained. Our inverse heat model significantly reduces the confidence intervals of the GF regional field around Dome C, which ranges from 48 to 60 mW m−2. Radar echoes need to be interpreted knowing the time lag of the climate signal to reach the bed. Several old-ice targets are confirmed and a new one is suggested, in which the GF is very low.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Priscilla Le Mézo, Luc Beaufort, Laurent Bopp, Pascale Braconnot, and Masa Kageyama
Clim. Past, 13, 759–778, https://doi.org/10.5194/cp-13-759-2017, https://doi.org/10.5194/cp-13-759-2017, 2017
Short summary
Short summary
This paper focuses on the relationship between Arabian Sea biological productivity and the Indian summer monsoon in climates of the last 72 kyr. A general circulation model coupled to a biogeochemistry model simulates the changes in productivity and monsoon intensity and pattern. The paradigm stating that a stronger summer monsoon enhances productivity is not always verified in our simulations. This work highlights the importance of considering the monsoon pattern in addition to its intensity.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
Ruza F. Ivanovic, Lauren J. Gregoire, Masa Kageyama, Didier M. Roche, Paul J. Valdes, Andrea Burke, Rosemarie Drummond, W. Richard Peltier, and Lev Tarasov
Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, https://doi.org/10.5194/gmd-9-2563-2016, 2016
Short summary
Short summary
This manuscript presents the experiment design for the PMIP4 Last Deglaciation Core experiment: a transient simulation of the last deglaciation, 21–9 ka. Specified model boundary conditions include time-varying orbital parameters, greenhouse gases, ice sheets, ice meltwater fluxes and other geographical changes (provided for 26–0 ka). The context of the experiment and the choices for the boundary conditions are explained, along with the future direction of the working group.
Olivier Passalacqua, Olivier Gagliardini, Frédéric Parrenin, Joe Todd, Fabien Gillet-Chaulet, and Catherine Ritz
Geosci. Model Dev., 9, 2301–2313, https://doi.org/10.5194/gmd-9-2301-2016, https://doi.org/10.5194/gmd-9-2301-2016, 2016
Short summary
Short summary
In ice-flow modelling, computing in 3-D requires a lot of resources, but 2-D models lack physical likelihood when the flow is diverging. That is why 2-D models accounting for the divergence, so-called 2.5-D models, are an interesting trade-off. However, the applicability of these 2.5-D models has never been systematically examined. We show that these models are ineffective in the case of highly diverging flows, but also for varying temperature, which was not suspected.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
Marianne Bügelmayer-Blaschek, Didier M. Roche, Hans Renssen, and Claire Waelbroeck
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-31, https://doi.org/10.5194/cp-2016-31, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Using the global isotope-enabled climate – iceberg model iLOVECLIM we performed three experiments to investigate the mechanisms behind the simulated δ18Ocalcite pattern applying a Heinrich event like iceberg forcing. Our model results display two main patterns in the δ18Ocalcite signal. First, we find regions that display almost no response in δ18Ocalcite and second, regions where the δ18Ocalcite pattern closely follows the δ18Oseawater signal.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
A. Abe-Ouchi, F. Saito, M. Kageyama, P. Braconnot, S. P. Harrison, K. Lambeck, B. L. Otto-Bliesner, W. R. Peltier, L. Tarasov, J.-Y. Peterschmitt, and K. Takahashi
Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, https://doi.org/10.5194/gmd-8-3621-2015, 2015
Short summary
Short summary
We describe the creation of boundary conditions related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and altitude of ice-free land, at the Last Glacial Maximum (LGM), for use in LGM experiments conducted as part of the Coupled Modelling Intercomparison Project (CMIP5) and Palaeoclimate Modelling Intercomparison Project (PMIP3). The difference in the ice sheet boundary conditions as well as the climate response to them are discussed.
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, and C. Ritz
Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, https://doi.org/10.5194/cp-11-1467-2015, 2015
Short summary
Short summary
The present study investigates the potential impact of the North American ice sheet on the surface mass balance of the Eurasian ice sheet through changes in the past glacial atmospheric circulation. Using an atmospheric circulation model and an ice-sheet model, we show that the albedo of the American ice sheet favors the growth of the Eurasian ice sheet, whereas the topography of the American ice sheet leads to more ablation over North Eurasia, and therefore to a smaller Eurasian ice sheet.
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary
Short summary
This study presents a new parameterization of the vegetation dynamics module in the process-based ecosystem model ORCHIDEE for mid- to high-latitude regions, showing significant improvements in the modeled distribution of tree functional types north of 40°N. A new set of metrics is proposed to quantify the performance of ORCHIDEE, which integrates uncertainties in the observational data sets.
M. Bügelmayer, D. M. Roche, and H. Renssen
Geosci. Model Dev., 8, 2139–2151, https://doi.org/10.5194/gmd-8-2139-2015, https://doi.org/10.5194/gmd-8-2139-2015, 2015
N. Bouttes, D. M. Roche, V. Mariotti, and L. Bopp
Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, https://doi.org/10.5194/gmd-8-1563-2015, 2015
Short summary
Short summary
We describe the development of a relatively simple climate model to include a model of the carbon cycle in the ocean. The carbon cycle consists of the exchange of carbon between the atmosphere, land vegetation and ocean. In the ocean, carbon exists in organic form, such as plankton which grows and dies, and inorganic forms, such as dissolved CO2. With this we will be able to explore long-standing questions such as why the atmospheric CO2 has changed over time during the last million years.
D. C. Kitover, R. van Balen, D. M. Roche, J. Vandenberghe, and H. Renssen
Geosci. Model Dev., 8, 1445–1460, https://doi.org/10.5194/gmd-8-1445-2015, https://doi.org/10.5194/gmd-8-1445-2015, 2015
M. Bügelmayer, D. M. Roche, and H. Renssen
The Cryosphere, 9, 821–835, https://doi.org/10.5194/tc-9-821-2015, https://doi.org/10.5194/tc-9-821-2015, 2015
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
K. A. Crichton, D. M. Roche, G. Krinner, and J. Chappellaz
Geosci. Model Dev., 7, 3111–3134, https://doi.org/10.5194/gmd-7-3111-2014, https://doi.org/10.5194/gmd-7-3111-2014, 2014
Short summary
Short summary
Permafrost is ground that remains frozen for two or more consecutive years. An estimated 50% of the global below-ground organic carbon is stored in soils of the permafrost zone. This study presents the development and validation of a simplified permafrost-carbon mechanism for the CLIMBER-2 model. Our model development allows, for the first time, the study of the role of permafrost soils in the global carbon cycle for long timescales and for coupled palaeoclimate Earth system modelling studies.
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
T. Caley, D. M. Roche, C. Waelbroeck, and E. Michel
Clim. Past, 10, 1939–1955, https://doi.org/10.5194/cp-10-1939-2014, https://doi.org/10.5194/cp-10-1939-2014, 2014
D. M. Roche, C. Dumas, M. Bügelmayer, S. Charbit, and C. Ritz
Geosci. Model Dev., 7, 1377–1394, https://doi.org/10.5194/gmd-7-1377-2014, https://doi.org/10.5194/gmd-7-1377-2014, 2014
M.-N. Woillez, G. Levavasseur, A.-L. Daniau, M. Kageyama, D. H. Urrego, M.-F. Sánchez-Goñi, and V. Hanquiez
Clim. Past, 10, 1165–1182, https://doi.org/10.5194/cp-10-1165-2014, https://doi.org/10.5194/cp-10-1165-2014, 2014
B. Bonan, M. Nodet, C. Ritz, and V. Peyaud
Nonlin. Processes Geophys., 21, 569–582, https://doi.org/10.5194/npg-21-569-2014, https://doi.org/10.5194/npg-21-569-2014, 2014
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, D. M. Roche, and C. Ritz
Clim. Past, 10, 345–358, https://doi.org/10.5194/cp-10-345-2014, https://doi.org/10.5194/cp-10-345-2014, 2014
F. Colleoni, S. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner
Clim. Past, 10, 269–291, https://doi.org/10.5194/cp-10-269-2014, https://doi.org/10.5194/cp-10-269-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014, https://doi.org/10.5194/tc-8-181-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 195–208, https://doi.org/10.5194/tc-8-195-2014, https://doi.org/10.5194/tc-8-195-2014, 2014
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
D. M. Roche
Geosci. Model Dev., 6, 1481–1491, https://doi.org/10.5194/gmd-6-1481-2013, https://doi.org/10.5194/gmd-6-1481-2013, 2013
D. M. Roche and T. Caley
Geosci. Model Dev., 6, 1493–1504, https://doi.org/10.5194/gmd-6-1493-2013, https://doi.org/10.5194/gmd-6-1493-2013, 2013
T. Caley and D. M. Roche
Geosci. Model Dev., 6, 1505–1516, https://doi.org/10.5194/gmd-6-1505-2013, https://doi.org/10.5194/gmd-6-1505-2013, 2013
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
Y. Chavaillaz, F. Codron, and M. Kageyama
Clim. Past, 9, 517–524, https://doi.org/10.5194/cp-9-517-2013, https://doi.org/10.5194/cp-9-517-2013, 2013
A. Quiquet, C. Ritz, H. J. Punge, and D. Salas y Mélia
Clim. Past, 9, 353–366, https://doi.org/10.5194/cp-9-353-2013, https://doi.org/10.5194/cp-9-353-2013, 2013
B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein, A. J. Dolman, and M. Kageyama
Clim. Past, 9, 149–171, https://doi.org/10.5194/cp-9-149-2013, https://doi.org/10.5194/cp-9-149-2013, 2013
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, https://doi.org/10.5194/tc-6-1561-2012, 2012
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
Related subject area
Numerical Modelling
New glacier thickness and bed topography maps for Svalbard
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Brief communication: Stalagmite damage by cave ice flow quantitatively assessed by fluid–structure interaction simulations
Exploring the decision-making process in model development: focus on the Arctic snowpack
Exploring the potential of forest snow modeling at the tree and snowpack layer scale
Simulating lake ice phenology using a coupled atmosphere–lake model at Nam Co, a typical deep alpine lake on the Tibetan Plateau
Modelling the effect of free convection on permafrost melting rates in frozen rock clefts
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Antarctic sensitivity to oceanic melting parameterizations
Analytical solutions for the advective–diffusive ice column in the presence of strain heating
A minimal machine learning glacier mass balance model
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
Improving large-scale snow albedo modelling using a climatology of light-absorbing particle deposition
Analyzing the sensitivity of a blowing snow model (SnowPappus) to precipitation forcing, blowing snow, and spatial resolution
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Biases in ice sheet models from missing noise-induced drift
Quantifying radiative effects of light–absorbing particles deposition on snow at the SnowMIP sites
Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Physically-based modelling of glacier evolution under climate change in the tropical Andes
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model
Sea ice cover in the Copernicus Arctic Regional Reanalysis
Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming
Smoothed particle hydrodynamics implementation of the standard viscous–plastic sea-ice model and validation in simple idealized experiments
Coupled thermo–geophysical inversion for permafrost monitoring
Using specularity content to evaluate eight geothermal heat flow maps of Totten Glacier
Surging of a Hudson Strait-scale ice stream: subglacial hydrology matters but the process details mostly do not
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Regularization and L-curves in ice sheet inverse models: a case study in the Filchner–Ronne catchment
Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded
The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry
Phase-field models of floe fracture in sea ice
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Modelling the development and decay of cryoconite holes in northwestern Greenland
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025, https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Short summary
Accurate information on the ice thickness of Svalbard's glaciers is important for assessing the contribution to sea level rise in a present and a future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations to infer basal conditions. We present and analyse the new bed and thickness maps, quantify the ice volume (6800 km3), and compare these against radar data and previous studies.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024, https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Short summary
In 2022, multi-year landfast sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the fast ice was joined to the glacier terminus, it could provide resistance against the glacier's flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the fast ice provided significant support to Crane prior to its disintegration.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024, https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary
Short summary
Water below ice sheets affects ice-sheet motion, while the evolution of ice sheets likewise affects the water below. We create a model that allows for water and ice to affect each other and use it to see how this coupling or lack thereof may impact ice-sheet retreat. We find that coupling an evolving water system with the ice sheet results in more retreat than if we assume unchanging conditions under the ice, which indicates a need to better represent the effects of water in ice-sheet models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024, https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Short summary
The form of the friction law which determines the speed of ice sliding over the bedrock remains a major source of uncertainty in ice sheet model projections of future sea level rise. Jakobshavn Isbræ, the fastest-flowing glacier in Greenland, which has undergone significant changes in the last few decades, is an ideal case for testing sliding laws. We find that a regularised Coulomb friction law reproduces the large seasonal and inter-annual flow speed variations most accurately.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024, https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time because different processes prevail at different locations in the forest.
Xu Zhou, Binbin Wang, Xiaogang Ma, Zhu La, and Kun Yang
The Cryosphere, 18, 4589–4605, https://doi.org/10.5194/tc-18-4589-2024, https://doi.org/10.5194/tc-18-4589-2024, 2024
Short summary
Short summary
The simulation of the ice phenology of Nam Co by WRF is investigated. Compared with the default model, improving the key lake schemes, such as water surface roughness length for heat fluxes and the shortwave radiation transfer for lake ice, can better simulate the lake ice phenology. The still existing errors in the spatial patterns of lake ice phenology imply that challenges still exist in modelling key lake and non-lake physics such as grid-scale water circulation and snow-related processes.
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024, https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Short summary
We developed a model to simulate the natural convection of water within frozen rock crevices subject to daily warming in mountain permafrost regions. Traditional models relying on conduction and latent heat flux typically overlook free convection. The results reveal that free convection can significantly accelerate the melting rate by an order of magnitude compared to conduction-based models. Our results are important for assessing the impact of climate change on mountain infrastructure.
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024, https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Short summary
We hypothesize that using a broad set of surface characterization metrics for polar sea ice surfaces will lead to more accurate representations in general circulation models. However, the first step is to identify the minimum set of metrics required. We show via numerical simulations that sea ice surface patterns can play a crucial role in determining boundary layer structures. We then statistically analyze a set of high-resolution sea ice surface images to obtain this minimal set of parameters.
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024, https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Short summary
We present sea level projections for Antarctica in the context of ISMIP6-2300 with several forcings but extend the simulations to 2500, showing that more than 3 m of sea level contribution could be reached. We also test the sensitivity on a basal melting parameter and determine the timing of the loss of ice in the west region. All the simulations were carried out with the ice sheet model Yelmo.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024, https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Short summary
Our study tries to understand how the ice temperature evolves in a large mass as in the case of Antarctica. We found a relation that tells us the ice temperature at any point. These results are important because they also determine how the ice moves. In general, ice moves due to slow deformation (as if pouring honey from a jar). Nevertheless, in some regions the ice base warms enough and melts. The liquid water then serves as lubricant and the ice slides and its velocity increases rapidly.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378, https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug.) and total precipitation (Oct.–Febr.). Our model can accurately predict glacier mass from 1961–2021 but struggles for extreme years (2022 and 2023).
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024, https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Short summary
Due to surface melting, meltwater lakes seasonally form on the surface of glaciers. These lakes drive hydrofractures that rapidly transfer water to the base of ice sheets. This paper presents a computational method to capture the complicated hydrofracturing process. Our work reveals that viscous ice rheology has a great influence on the short-term propagation of fractures, enabling fast lake drainage, whereas thermal effects (frictional heating, conduction, and freezing) have little influence.
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024, https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary
Short summary
This paper presents the evaluation of a numerical discrete element method (DEM) by simulating cone penetration tests in different snow samples. The DEM model demonstrated a good ability to reproduce the measured mechanical behaviour of the snow, namely the force evolution on the cone and the grain displacement field. Systematic sensitivity tests showed that the mechanical response depends not only on the microstructure of the sample but also on the mechanical parameters of grain contacts.
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024, https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Short summary
Snow redistribution by wind and avalanches strongly influences snow hydrology in mountains. This study presents a novel modelling approach to best represent these processes in an operational context. The evaluation of the simulations against airborne snow depth measurements showed remarkable improvement in the snow distribution in mountains of the eastern Swiss Alps, with a representation of snow accumulation and erosion areas, suggesting promising benefits for operational snow melt forecasts.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Manon Gaillard, Vincent Vionnet, Matthieu Lafaysse, Marie Dumont, and Paul Ginoux
EGUsphere, https://doi.org/10.5194/egusphere-2024-1795, https://doi.org/10.5194/egusphere-2024-1795, 2024
Short summary
Short summary
This study presents an efficient method to improve large-scale snow albedo simulations by considering the spatial variability of light-absorbing particles (LAPs) like black carbon and dust. A global climatology of LAP deposition was created and used to optimize a parameter in the Crocus snow model. Testing at ten global sites improved albedo predictions by 10 % on average and over 25 % in the Arctic. This method can also enhance other snow models' predictions without complex simulations.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024, https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been connected to rapid warming over the Arctic. Knowing which observations to assimilate into models will help produce more accurate sea ice conditions. We found that not assimilating sea ice concentration led to more accurate sea ice states. The methods typically used to assimilate observations in our models apply assumptions to variables that are not well suited for sea ice because they are bounded variables.
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024, https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
Short summary
The average size of many glaciers and ice sheets changes when noise is added to the system. The reasons for this drift in glacier state is intrinsic to the dynamics of how ice flows and the bumpiness of the Earth's surface. We argue that not including noise in projections of ice sheet evolution over coming decades and centuries is a pervasive source of bias in these computer models, and so realistic variability in glacier and climate processes must be included in models.
Enrico Zorzetto, Paul Ginoux, Sergey Malyshev, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-1258, https://doi.org/10.5194/egusphere-2024-1258, 2024
Short summary
Short summary
Light-absorbing particles (LAPs) deposition on snow leads to a darkening of the snow surface and can thus accelerate snow melt. Understanding to what extent different types of LAPs contribute to snow melt is important both to predict changes in water availability and for improving global climate model predictions. Here we extend a recently developed snow model to account for the deposition of LAPs in the snowpack and evaluate the effect of snow darkening on accelerating snow melt.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851, https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates into an ice sheet model. We apply this method using two ice sheet models on the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, the Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 meters globally.
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024, https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Short summary
A large fraction of the mass loss from marine-terminating glaciers is attributed to frontal ablation. In this study, we used a 3D ice flow model of a real glacier that includes the effects of calving and submarine melting. Over a 30-month simulation, we found that the model reproduced the seasonal cycle for this glacier. Besides, the front positions were in good agreement with observations in the central part of the front, with longitudinal differences, on average, below 15 m.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Joshua Cuzzone, Matias Romero, and Shaun A. Marcott
The Cryosphere, 18, 1381–1398, https://doi.org/10.5194/tc-18-1381-2024, https://doi.org/10.5194/tc-18-1381-2024, 2024
Short summary
Short summary
We simulate the retreat history of the Patagonian Ice Sheet (PIS) across the Chilean Lake District from 22–10 ka. These results improve our understanding of the response of the PIS to deglacial warming and the patterns of deglacial ice margin retreat where gaps in the geologic record still exist, and they indicate that changes in large-scale precipitation during the last deglaciation played an important role in modulating the response of ice margin change across the PIS to deglacial warming.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024, https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
Short summary
We present a new atmosphere–ocean–wave–sea ice coupled model to study the influences of ocean waves on Arctic sea ice simulation. Our results show (1) smaller ice-floe size with wave breaking increases ice melt, (2) the responses in the atmosphere and ocean to smaller floe size partially reduce the effect of the enhanced ice melt, (3) the limited oceanic energy is a strong constraint for ice melt enhancement, and (4) ocean waves can indirectly affect sea ice through the atmosphere and the ocean.
Yurii Batrak, Bin Cheng, and Viivi Kallio-Myers
The Cryosphere, 18, 1157–1183, https://doi.org/10.5194/tc-18-1157-2024, https://doi.org/10.5194/tc-18-1157-2024, 2024
Short summary
Short summary
Atmospheric reanalyses provide consistent series of atmospheric and surface parameters in a convenient gridded form. In this paper, we study the quality of sea ice in a recently released regional reanalysis and assess its added value compared to a global reanalysis. We show that the regional reanalysis, having a more complex sea ice model, gives an improved representation of sea ice, although there are limitations indicating potential benefits in using more advanced approaches in the future.
Michael A. Rawlins and Ambarish V. Karmalkar
The Cryosphere, 18, 1033–1052, https://doi.org/10.5194/tc-18-1033-2024, https://doi.org/10.5194/tc-18-1033-2024, 2024
Short summary
Short summary
Flows of water, carbon, and materials by Arctic rivers are being altered by climate warming. We used simulations from a permafrost hydrology model to investigate future changes in quantities influencing river exports. By 2100 Arctic rivers will receive more runoff from the far north where abundant soil carbon can leach in. More water will enter them via subsurface pathways particularly in summer and autumn. An enhanced water cycle and permafrost thaw are changing river flows to coastal areas.
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024, https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
Short summary
We developed a standard viscous–plastic sea-ice model based on the numerical framework called smoothed particle hydrodynamics. The model conforms to the theory within an error of 1 % in an idealized ridging experiment, and it is able to simulate stable ice arches. However, the method creates a dispersive plastic wave speed. The framework is efficient to simulate fractures and can take full advantage of parallelization, making it a good candidate to investigate sea-ice material properties.
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024, https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Short summary
We present the results of a fully coupled modeling framework for simulating the ground thermal regime using only surface measurements to calibrate the thermal model. The heat conduction model is forced by surface ground temperature measurements and calibrated using the field measurements of time lapse apparent electrical resistivity. The resistivity-calibrated thermal model achieves a performance comparable to the traditional calibration of borehole temperature measurements.
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024, https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Short summary
Geothermal heat flux (GHF) is an important factor affecting the basal thermal environment of an ice sheet and crucial for its dynamics. But it is poorly defined for the Antarctic ice sheet. We simulate the basal temperature and basal melting rate with eight different GHF datasets. We use specularity content as a two-sided constraint to discriminate between local wet or dry basal conditions. Two medium-magnitude GHF distribution maps rank well, showing that most of the inland bed area is frozen.
Matthew Drew and Lev Tarasov
The Cryosphere, 17, 5391–5415, https://doi.org/10.5194/tc-17-5391-2023, https://doi.org/10.5194/tc-17-5391-2023, 2023
Short summary
Short summary
The interaction of fast-flowing regions of continental ice sheets with their beds governs how quickly they slide and therefore flow. The coupling of fast ice to its bed is controlled by the pressure of meltwater at its base. It is currently poorly understood how the physical details of these hydrologic systems affect ice speedup. Using numerical models we find, surprisingly, that they largely do not, except for the duration of the surge. This suggests that cheap models are sufficient.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023, https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Short summary
The friction underneath ice sheets can be inferred from observed velocity at the top, but this inference requires smoothing. The selection of smoothing has been highly variable in the literature. Here we show how to rigorously select the best smoothing, and we show that the inferred friction converges towards the best knowable field as model resolution improves. We use this to learn about the best description of basal friction and to formulate recommended best practices for other modelers.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, and Georg Stadler
The Cryosphere, 17, 3883–3893, https://doi.org/10.5194/tc-17-3883-2023, https://doi.org/10.5194/tc-17-3883-2023, 2023
Short summary
Short summary
We develop a numerical method to simulate the fracture in kilometer-sized chunks of floating ice in the ocean. Our approach uses a mathematical model that balances deformation energy against the energy required for fracture. We study the strength of ice chunks that contain random impurities due to prior damage or refreezing and what types of fractures are likely to occur. Our model shows that crack direction critically depends on the orientation of impurities relative to surrounding forces.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Cited articles
Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, https://doi.org/10.5194/cp-3-423-2007, 2007.
Ambach, W.: Heat balance characteristics and ice ablation, western EGIG-profile, Applied hydrology in the development of northern basins, Danish Society for Arctic Technology, Copenhagen, 1988.
Bamber, J. L., layberry, R. L., and Gogineni, S. P.: A new ice thickness and bed data set for the Greenland ice sheet; 1. measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, 2001.
Bintanja, R., van de Wal, R. S. W., and Oerlemans, J.: Global ice volume variations through the last glacial cycle simulated by a 3-D ice dynamical model, Quatern. Int., 95–96, 11–23, 2002.
Bonelli, S., Charbit, S., Kageyama, M., Woillez, M.-N., Ramstein, G., Dumas, C., and Quiquet, A.: Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle, Clim. Past, 5, 329–345, https://doi.org/10.5194/cp-5-329-2009, 2009.
Braithwaithe, R. J.: Calculation of degree-days for glcier-climate research, Zeitschrift für Gletscherkunde und Glazialgeologie, 2°, 1–18, 1984.
Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland ice sheet studies by energy-balance modelling, J. Glaciol., 41, 153–160, 1995.
Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from air temperature, West Greenland, Glacier fluctuations and climatic change, Kluwer Academic Publisher, Dordrecht, 1989.
Braithwaite, R. J. and Zhang, Y.: Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, J. Glaciol., 46, 7–14, 2000.
Brigham-Grette, J.: New perspectives on Berigian Quaternary paleography, stratigraphy and glacial history, Quaternary Sci. Rev., 20, 15–24, 2001.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model for snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, 1989.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical snow model to simulate snow cover straigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.: Transient simulation of the last glacial inception. Part I : glacial inception as bifurfication in the climate system, Climate Dynam., 24, 545–561, 2005a.
Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., Brovkin, V., and Kubattzki, C.:Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis, Climate Dynam., 24, 563–576, 2005b.
Charbit, S., Ritz, C., and Ramstein, G.: Simulations of Northern Hemisphere ice-sheet retreat: sensitivity to physical mechanisms involved during the Last Deglaciation., Quaternary Sci. Rev., 21, 243–265, 2002.
Charbit, S., Kageyama, M., Roche, D., Ritz, C. and Ramstein, G.: Investigating the mechanisms leading to the deglaciation of past northern hemisphere ice sheets with the CLIMBER-GREMLINS coupled model, Global Planet. Change, 48, 253–273, 2005.
Charbit, S., Ritz, C., Philippon, G., Peyaud, V., and Kageyama, M.: Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle, Clim. Past, 3, 15–37, https://doi.org/10.5194/cp-3-15-2007, 2007.
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohman, G., Lunkeit, F., Mokhov, I. I, Petoukhov, V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity: closing the gap in the spectrum of climate models, Clim. Dynam., 18, 579–586, 2002.
Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C .M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quaternary Journal of Royal Meteorological Society, 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Ettema, J., van den Broecke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of Greenland ice sheet revealed by high-resolution climate modelling, Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GLO38110, 2009.
Fausto, R. S., Ahlstrom, A. P., van As, D., Johnsen, S. J., Langen, P. L., and Steffen, K.: Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland, J. Glaciol., 55, 869–878, 2009.
Fettweis, X.: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR, The Cryosphere, 1, 21–40, https://doi.org/10.5194/tc-1-21-2007, 2007.
Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J.: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models, The Cryosphere, 5, 359–375, https://doi.org/10.5194/tc-5-359-2011, 2011.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, 2013.
Finsterwalder, S. and Schunk, H.: Der Suldenferner, Zeitschrift des Deutschen und Östereichchischen Alpenvereins, 18, 72–89, 1887.
Fyke, J. G., Weaver, A. J., Pollard, D., Eby, M., Carter, L., and Mackintosh, A.: A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions, Geosci. Model Dev., 4, 117–136, https://doi.org/10.5194/gmd-4-117-2011, 2011.
Gallée, H. and Duynkerke, P. G.: Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland Ice Margin Experiment, J. Geophys. Res., 102, 13813–13824, 1997.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Graversen, R. G., Drijfhout, S. Hazeleger, W., van de Wal, R., Bintanja, R., and Helsen, M.: Greenland's contribution to global sea-level rise by the end of the 21st century, Clim. Dynam., 37, 1427–1442, 2010.
Greve, R.: On the response of Greenland ice sheet to greenhouse climate change, Climatic Change, 46, 289–303, 2000.
Greve, R.: Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424–432, 2005.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, 2003.
Huybrechts, P. and de Wolde, J.: The dynamic response of the Greenland and Antarctic ice sheets to multiple century climatic warming, J. Climate, 12, 2169–2188, 1999.
Huybrechts, P., Letréguilly, A., and Reeh, N.: The Greenland ice sheet and greenhouse warming, Palaeogeography, Paleoclimatology, Palaeoecology (Global and Planetary Change section), 89, 399–412, 1991.
Janssens, Y. and Huybrechts, P.: The treatment of meltwater retention in mass-balance parametriztaions of the Greenland ice sheet, Ann. Glaciol., 31, 133–140, 2000.
Kageyama, M., Charbit, S., Ritz, C., Khodri, M., and Ramstein, G.: Quantifying ice-sheet feedbacks during the last glacial inception, Geophys. Res. Lett., 31, L24203, https://doi.org/10.1029/2004GLO21339, 2004.
Key, J., Wang, X., Stroeve, J., and Fowler, C.: Estimating the cloudy sky albedo of sea ice and snow from space, J. Geophys. Res., 106, 12489–12497, 2001.
Lambeck, K. and Chappell, J.: Sea level change through the last glacial cycle, Science, 292, 679–686, 2001.
Lambeck, K., Purcell, A., Funder, S., Kjaer, K. H., Larsen, E., and Möller, P.: Constraints on teh Late Saalian to early Middle Weichselian ice sheet of eurasia from field data and rebound modelling, Boreas, 35, 539–575, 2006.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long term numerical solution for the insolation quantities of teh Earth, Astron. Astrophys., 428, 261–285, 2004.
Lefebre, F., Gallée, H., van Ypersele, J. P., and Huybrechts, P.: Modelling of large-scale melt parameters with a regional climate model in South Greenland during the 1991 melt season, Ann. Gaciol., 35, 391–397, 2002.
Lefebre, F., Fettweis, X., Gallée, H., van Ypersele, J.-P., Marbaix, P., Greuell, W., and Calanca P.: Evaluation of a high resolution regional climate simulation over Greenland, Clim. Dynam., 25, 99–116, https://doi.org/10.1007/s00382-005-0005-8, 2005.
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica, J. Geophys. Res., 94, 4071–4087, 1989.
Oerlemans, J. and Hoogendoorn, N. C.: Mass-balance gradients and climatic changes, J. Glaciol., 35, 399–405, 1989.
Oerlemans, J. and Vugts, H. F.: A meteorological experiment in the melting zone of the Greenland ice sheet, Bulletin of American Meteorological Society, 74, 355–365, 1993.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annual Reviews of Earth and Planetary Science, 32, 111–149, 2004.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappelaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate, Clim. Dynam., 16, 1–17, 2000.
Peyaud, V., Ritz, C., and Krinner, G.: Modelling the Early Weichselian Eurasian Ice Sheets: role of ice shelves and influence of ice-dammed lakes, Clim. Past, 3, 375–386, https://doi.org/10.5194/cp-3-375-2007, 2007.
Pfeffer, W. T., Meier, M. F., and Illangasekare, T. H.: Retention of Greenland runoff by refreezing: implications for projected future sea level changes, J. Geophys. Res., 96, 22117–22124, 1991.
Philippon, G., Ramstein, G., Charbit, S., Kageyama, M., Ritz, C., and Dumas, C.: Evolution of the Antarctic ice sheet through the last deglaciation : a study with a new coupled climate-north and south hemisphere ice sheet model, Earth Planet. Sc. Lett., 248, 750–758, 2006.
Reeh, N.: Parameterization of melt rate and surface temperature on the Greenland ice sheet, Polarforschung, 59, 113–128, 1991.
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., and Stap, L. B.: Refreezing on the Greenland ice sheet: a comparison of parameterisations, The Cryosphere, 6, 743–762, https://doi.org/10.5194/tc-6-743-2012, 2012.
Ritz, C., Fabre, A., and Letréguilly, A.: Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle, Clim. Dynam., 13, 11–24, 1997.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the Antarctic ice sheet evolution of the last 420 000 years: implication for altitude changes in the Vostok region, J. Geophys. Res., 106, 31943–31964, 2001.
Robinson, A., Calov, R., and Ganopolski, A.: Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Clim. Past, 7, 381–396, https://doi.org/10.5194/cp-7-381-2011, 2011.
Stone, E. J., Lunt, D. J., Rutt, I. C., and Hanna, E.: Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change, The Cryosphere, 4, 397–417, https://doi.org/10.5194/tc-4-397-2010, 2010.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingolfsson, O., Jakobsson, M., Kjaer, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lysa, A., Mangerud, J., Matiouchkhov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of Northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, 2004.
Swingedouw, D., Fichefet, T., Huybrechts, P., Goose, H., Driiesschaert, E., and Loutre, M.-F.: Antarctic ice-sheet melting provides negative feedbacks on future climate warming, Geophys. Res. Lett., 35, L17705, https://doi.org/10.1029/2008GLO34410, 2008.
Tarasov, L. and Peltier, W. R.: Impact of thermomechanical ice sheet coupling of the 100 kyr ice age cycle, J. Geophys. Res., 104, 9517–9545, 1999.
Tarasov, L. and Peltier, W. R.: Greenland glacial history and local geodynamic consequences, Geophys. J. Int., 150, 198–229, 2002.
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modelling, Earth Planet. Sc. Lett., 315–316, 30–40, 2012.
van den Broecke, M. R., Dyunkerke, P. G., and Oerlemans, J.: The observed katabatic flow at the edge of the Greenalnd ice sheet during GIMEX-91, Global Planet. Change, 9, 3–15, 1994.
van den Broecke, M. R., Smeets, P., Ettema, J., and Munneke, P. K.: Surface radiation balance in the ablation zone of the west Greenland ice sheet, J. Geophys. Res., 113, D13105, https://doi.org/10.1029/2007JD009283, 2008.
Vizcaino, M., Mikolajewicz, U., Gröger, M., Maier-Reimer, E., Schurgers, G., and Winguth, A. M. E.: Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model, Clim. Dynam., 31, 665–690, 2008.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, 2002.
Zweck, C. and Huybrechts, P.: Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity, J. Geophys. Res., 110, D07103, https://doi.org/10.1029/2004JD005489, 2005.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2629 KB) - Metadata XML