Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 5, issue 1
The Cryosphere, 5, 135–138, 2011
https://doi.org/10.5194/tc-5-135-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 5, 135–138, 2011
https://doi.org/10.5194/tc-5-135-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Brief communication 01 Mar 2011

Brief communication | 01 Mar 2011

Brief communication "Application of mobile laser scanning in snow cover profiling"

S. Kaasalainen et al.

Related subject area

Instrumentation
Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020,https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement
Stephan Gruber
The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020,https://doi.org/10.5194/tc-14-1437-2020, 2020
Short summary
Pressure and inertia sensing drifters for glacial hydrology flow path measurements
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020,https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019,https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary
Monitoring of snow surface near-infrared bidirectional reflectance factors with added light-absorbing particles
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019,https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary

Cited articles

Barber, D. M. and Mills, J. P.: Vehicle based waveform laser scanning in a coastal environment, Int. Arch. Photogramm. Remote Sens., 36(C55) (available at: http://www.isprs.org/proceedings/XXXVI/5-C55/www.cirgeo.unipd.it/cirgeo/convegni/mmt2007/proceedings/index.html), 2007.
Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B., and McAdoo, D. C.: Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice, Remote Sens. Environ., 113, 563–570, 2009.
Höfle B., Geist, T., Rutzinger, M., and Pfeifer, N.: Glacier surface segmentation using airborne laser scanner point cloud and intensity data, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 36, 95–200, 2007.
Kaasalainen, S., Kaartinen, H., and Kukko, A.: Snow cover change detection with laser scanning range and brightness measurements, EARSeL eProceedings, 7, 133–141, 2008.
Kukko, A.: Road Environment Mapper – 3-D data capturing with mobile mapping, Helsinki University of Technology, Lic. Tech. Thesis, 2009.
Publications Copernicus
Download
Citation