Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4855-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4855-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying retrogressive thaw slump mass wasting and carbon mobilisation on the Qinghai-Tibet Plateau using multi-modal remote sensing
Department of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Zhuoxuan Xia
Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Hong Kong, China
Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Hong Kong, China
Mark J. Lara
Department(s) of Plant Biology and Geography, University of Illinois at Champaign-Urbana, Urbana, IL, USA
Jurjen van der Sluijs
Northwest Territories Centre for Geomatics, Government of Northwest Territories, Yellowknife, NWT, X1A 2L9, Canada
Philipp Bernhard
Gamma Remote Sensing, Bern, Switzerland
Irena Hajnsek
Department of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Microwaves and Radar Institute, German Aerospace Centre (DLR), 8053 Wessling, Germany
Related authors
No articles found.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025, https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Short summary
This work presents an improved method for seasonal wet snow mapping in Karakoram using synthetic aperture radar (SAR) data and topographic data. This method enables robust wet snow classification in complex mountainous terrain. Large-scale wet snow maps were generated using the proposed method, covering three major water basins in Karakoram over 4 years (2017–2021). Crucial snow variables were further derived from the maps and provided valuable insights on regional snow melting dynamics.
Sara-Patricia Schlenk, Georg Fischer, Matteo Pardini, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-3474, https://doi.org/10.5194/egusphere-2024-3474, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) revealed ice features of unknown glaciological origin in southwest Greenland’s ablation zone. Using SAR techniques, we identified low-backscatter areas with surface scattering, in contrast to surrounding high-backscatter areas with scattering from the subsurface. Our first theory relates the low backscatter to residual liquid water in a weathering crust and the surrounding to bare glacier ice. These findings may deepen our understanding of ablation zone properties.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Cited articles
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Bojarski, A., Bachmann, M., Boer, J., Kraus, T., Wecklich, C., Steinbrecher, U., Tous-Ramon, N., Schmidt, K., Klenk, P., Grigorov, C., Schwerdt, M., and Zink, M.: TanDEM-X Long-Term System Performance After 10 Years of Operation, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, 14, 2522–2534, https://doi.org/10.1109/JSTARS.2021.3055546, 2021. a, b
Burn, C. and Lewkowicz, A.: CANADIAN LANDFORM EXAMPLES – 17 RETROGRESSIVE THAW SLUMPS, Canadian Geographer, 34, 273–276, https://doi.org/10.1111/j.1541-0064.1990.tb01092.x, 1990. a, b
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived from passive microwave remote-sensing data in China, Annals of Glaciology, 49, 145–154, https://doi.org/10.3189/172756408787814690, 2008. a, b
Chen, L., Yang, G., Bai, Y., Chang, J., Qin, S., Liu, F., He, M., Song, Y., Zhang, F., Peñuelas, J., Zhu, B., Zhou, G., and Yang, Y.: Permafrost carbon cycle and its dynamics on the Tibetan Plateau, Science China Life Sciences, 67, 1833–1848, https://doi.org/10.1007/s11427-023-2601-1, 2024a. a, b, c, d
Chen, T., Wang, J., Che, T., Hao, X., and Li, H.: High spatial resolution elevation change dataset derived from ICESat-2 crossover points on the Tibetan Plateau, Scientific Data, 11, 394, https://doi.org/10.1038/s41597-024-03214-2, 2024b. a, b
Chen, X., An, S., Inouye, D. W., and Schwartz, M. D.: Temperature and snowfall trigger alpine vegetation green‐up on the world's roof, Global Change Biology, 21, 3635–3646, https://doi.org/10.1111/gcb.12954, 2015. a, b
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau, Journal of Geophysical Research: Earth Surface, 112, 2006JF000631, https://doi.org/10.1029/2006JF000631, 2007. a
CPA, Lewkowicz, A., Wolfe, S., Geological Survey of Canada, Roujanski, V., Tetra Tech Canada, Hoeve, E., HoeveEng Consulting Ltd, O'Neill, B., Geological Survey of Canada, Gruber, S., Carleton University, Roy-Léveillée, P., Université Laval, Brown, N., Carleton University, Koenig, C., BGC Engineering, Brooks, H., BGC Engineering, Rudy, A., Northwest Territories Geological Survey, Bonnaventure, P., University of Lethbridge, Paquette, M., and Stantec: An Illustrated Permafrost Dictionary, Tech. rep., https://doi.org/10.52381/CPA.permafrostdictionary.1, 2024. a, b
Dai, C., Howat, I. M., Van Der Sluijs, J., Liljedahl, A. K., Higman, B., Freymueller, J. T., Ward Jones, M. K., Kokelj, S. V., Boike, J., Walker, B., and Marsh, P.: Applications of ArcticDEM for measuring volcanic dynamics, landslides, retrogressive thaw slumps, snowdrifts, and vegetation heights, Science of Remote Sensing, 9, 100130, https://doi.org/10.1016/j.srs.2024.100130, 2024. a, b
Dai, C., Ward Jones, M. K., Van Der Sluijs, J., Nesterova, N., Howat, I. M., Liljedahl, A. K., Higman, B., Freymueller, J. T., Kokelj, S. V., and Sriram, S.: Volumetric quantifications and dynamics of areas undergoing retrogressive thaw slumping in the Northern Hemisphere, Nature Communications, 16, 6795, https://doi.org/10.1038/s41467-025-62017-0, 2025. a, b, c, d, e, f, g, h, i, j
Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., and Zhao, L.: The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region, Nature Communications, 10, 4195, https://doi.org/10.1038/s41467-019-12214-5, 2019. a
Fan, X., Wang, Y., Niu, F., Li, W., Wu, X., Ding, Z., Pang, W., and Lin, Z.: Environmental Characteristics of High Ice-Content Permafrost on the Qinghai–Tibetan Plateau, Remote Sensing, 15, 4496, https://doi.org/10.3390/rs15184496, 2023. a, b
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V., and Nicolsky, D.: Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic, Geophysical Research Letters, 46, 6681–6689, https://doi.org/10.1029/2019GL082187, 2019. a
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E. A. G., Jorgenson, T., Marchenko, S., Romanovsky, V., Wickland, K. P., French, N., Waldrop, M., Bourgeau-Chavez, L., and Striegl, R. G.: Vulnerability of high-latitude soil organic carbon in North America to disturbance, J. Geophys. Res., 116, https://doi.org/10.1029/2010JG001507, 2011. a
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A. V., and Grigoriev, M. N.: Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction, The Cryosphere, 9, 151–178, https://doi.org/10.5194/tc-9-151-2015, 2015. a
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.: Impacts of permafrost degradation on infrastructure, Nature Reviews Earth & Environment, 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8, 2022. a
Holloway, J. E., Lewkowicz, A. G., Douglas, T. A., Li, X., Turetsky, M. R., Baltzer, J. L., and Jin, H.: Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects, Permafrost and Periglacial Processes, 31, 371–382, https://doi.org/10.1002/ppp.2048, 2020. a
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images, Remote Sensing of Environment, 237, 111534, https://doi.org/10.1016/j.rse.2019.111534, 2020. a
Huang, L., Liu, L., Luo, J., Lin, Z., and Niu, F.: Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images, International Journal of Applied Earth Observation and Geoinformation, 102, 102399, https://doi.org/10.1016/j.jag.2021.102399, 2021. a, b, c
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Hugonnet, R., Mannerfelt, E., Dehecq, A., Knuth, F., and Tedstone, A.: xDEM (v0.0.2), Zenodo [software], https://doi.org/10.5281/zenodo.4809698, 2021. a
Jaboyedoff, M., Carrea, D., Derron, M.-H., Oppikofer, T., Penna, I. M., and Rudaz, B.: A review of methods used to estimate initial landslide failure surface depths and volumes, Engineering Geology, 267, 105478, https://doi.org/10.1016/j.enggeo.2020.105478, 2020. a, b, c
Jiao, C., Niu, F., He, P., Ren, L., Luo, J., and Shan, Y.: Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China, Remote Sensing, 14, 5592, https://doi.org/10.3390/rs14215592, 2022. a
Kokelj, S., Tunnicliffe, J., Lacelle, D., Lantz, T., Chin, K., and Fraser, R.: Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada, Global and Planetary Change, 129, 56–68, https://doi.org/10.1016/j.gloplacha.2015.02.008, 2015. a, b
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research, Permafr. Periglac. Process., 24, 108–119, https://doi.org/10.1002/ppp.1779, 2013. a
Kokelj, S. V., Kokoszka, J., van der Sluijs, J., Rudy, A. C. A., Tunnicliffe, J., Shakil, S., Tank, S. E., and Zolkos, S.: Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks, The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m
Krautblatter, M., Angelopoulos, M., Pollard, W. H., Lantuit, H., Lenz, J., Fritz, M., Couture, N., and Eppinger, S.: Life Cycles and Polycyclicity of Mega Retrogressive Thaw Slumps in Arctic Permafrost Revealed by 2D/3D Geophysics and Long‐Term Retreat Monitoring, Journal of Geophysical Research: Earth Surface, 129, e2023JF007556, https://doi.org/10.1029/2023JF007556, 2024. a
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 45, 3317–3341, https://doi.org/10.1109/TGRS.2007.900693, 2007. a, b, c, d
Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada: Climatic and Geomorphic Factors affecting Thaw Slump Activity, Permafrost and Periglacial Processes, 21, 1–15, https://doi.org/10.1002/ppp.666, 2010. a
Lacelle, D., Brooker, A., Fraser, R. H., and Kokelj, S. V.: Distribution and growth of thaw slumps in the Richardson Mountains–Peel Plateau region, northwestern Canada, Geomorphology, 235, 40–51, https://doi.org/10.1016/j.geomorph.2015.01.024, 2015. a
Lantuit, H. and Pollard, W. H.: Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory, Nat. Hazards Earth Syst. Sci., 5, 413–423, https://doi.org/10.5194/nhess-5-413-2005, 2005. a, b
Lantuit, H. and Pollard, W.: Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada, Geomorphology, 95, 84–102, https://doi.org/10.1016/j.geomorph.2006.07.040, 2008. a
Lantz, T. C. and Kokelj, S. V.: Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada, Geophys. Res. Lett., 35, L06502, https://doi.org/10.1029/2007GL032433, 2008. a, b
Leibman, M., Kizyakov, A., Zhdanova, Y., Sonyushkin, A., and Zimin, M.: Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001–2010, Remote Sensing, 13, 4042, https://doi.org/10.3390/rs13204042, 2021. a
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment, Nat. Commun., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7, 2019. a, b, c
Li, D., Lu, X., Walling, D. E., Zhang, T., Steiner, J. F., Wasson, R. J., Harrison, S., Nepal, S., Nie, Y., Immerzeel, W. W., Shugar, D. H., Koppes, M., Lane, S., Zeng, Z., Sun, X., Yegorov, A., and Bolch, T.: High Mountain Asia hydropower systems threatened by climate-driven landscape instability, Nature Geoscience, 15, 520–530, https://doi.org/10.1038/s41561-022-00953-y, 2022. a
Li, W., Yan, D., Lou, Y., Weng, B., Zhu, L., Lai, Y., and Wang, Y.: Characteristic, relationship and impact of thermokarst lakes and retrogressive thaw slumps over the Qinghai-Tibetan plateau, Geoderma, 457, 117293, https://doi.org/10.1016/j.geoderma.2025.117293, 2025. a
Lin, Z., Gao, Z., Fan, X., Niu, F., Luo, J., Yin, G., and Liu, M.: Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau, Geoderma, 376, 114540, https://doi.org/10.1016/j.geoderma.2020.114540, 2020. a
Liu, F., Chen, L., Abbott, B. W., Xu, Y., Yang, G., Kou, D., Qin, S., Strauss, J., Wang, Y., Zhang, B., and Yang, Y.: Reduced quantity and quality of SOM along a thaw sequence on the Tibetan Plateau, Environmental Research Letters, 13, 104017, https://doi.org/10.1088/1748-9326/aae43b, 2018. a, b, c
Liu, F., Kou, D., Chen, Y., Xue, K., Ernakovich, J. G., Chen, L., Yang, G., and Yang, Y.: Altered microbial structure and function after thermokarst formation, Global Change Biology, 27, 823–835, https://doi.org/10.1111/gcb.15438, 2021. a
Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent decades, International Journal of Climatology, 20, 1729–1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000. a, b, c
Liu, Y., Qiu, H., Kamp, U., Wang, N., Wang, J., Huang, C., and Tang, B.: Higher temperature sensitivity of retrogressive thaw slump activity in the Arctic compared to the Third Pole, Science of The Total Environment, 914, 170 007, https://doi.org/10.1016/j.scitotenv.2024.170007, 2024. a
Luo, J., Niu, F., Lin, Z., Liu, M., and Yin, G.: Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region, Geomorphology, 341, 79–85, https://doi.org/10.1016/j.geomorph.2019.05.020, 2019. a, b
Ma, J., Wang, G., Song, C., Gao, D., Li, J., Huang, P., Guo, L., Li, K., Lin, S., and Sun, S.: Establishing a robust area-to-volume scaling for Qinghai-Tibetan Plateau Retrogressive Thaw Slumps: A key tool for quantifying mass wasting and carbon release induced by permafrost degradation, Global and Planetary Change, 254, 105012, https://doi.org/10.1016/j.gloplacha.2025.105012, 2025. a, b, c, d, e, f, g, h, i
Ma, Y., Huang, X.-D., Yang, X.-L., Li, Y.-X., Wang, Y.-L., and Liang, T.-G.: Mapping snow depth distribution from 1980 to 2020 on the tibetan plateau using multi-source remote sensing data and downscaling techniques, ISPRS Journal of Photogrammetry and Remote Sensing, 205, 246–262, https://doi.org/10.1016/j.isprsjprs.2023.10.012, 2023. a
Maier, K.: Dataset for Quantifying Retrogressive Thaw Slump Mass Wasting and Carbon Mobilisation on the Qinghai-Tibet Plateau Using Multi-Modal Remote Sensing, ETH Zurich [data set], https://doi.org/10.3929/ethz-b-000735734, 2025a. a
Maier, K.: kathrinmaier/qtp-rts-mass-wasting: Code for publication in The Cryosphere (v.0.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.17375814, 2025b. a
Maier, K., Bernhard, P., Ly, S., Volpi, M., Nitze, I., Li, S., and Hajnsek, I.: Detecting mass wasting of Retrogressive Thaw Slumps in spaceborne elevation models using deep learning, International Journal of Applied Earth Observation and Geoinformation, 137, 104419, https://doi.org/10.1016/j.jag.2025.104419, 2025. a, b, c, d, e, f, g
Martone, M., Bräutigam, B., Rizzoli, P., Gonzalez, C., Bachmann, M., and Krieger, G.: Coherence evaluation of TanDEM-X interferometric data, ISPRS J. Photogramm. Remote Sens., 73, 21–29, https://doi.org/10.1016/j.isprsjprs.2012.06.006, 2012. a
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G., Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling, B., Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks, Science Advances, 7, eaaz5236, https://doi.org/10.1126/sciadv.aaz5236, 2021. a, b
Mu, C. C., Abbott, B. W., Zhao, Q., Su, H., Wang, S. F., Wu, Q. B., Zhang, T. J., and Wu, X. D.: Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau, Geophysical Research Letters, 44, 8945–8952, https://doi.org/10.1002/2017GL074338, 2017. a, b, c, d
Nitzbon, J., Westermann, S., Langer, M., Martin, L. C. P., Strauss, J., Laboor, S., and Boike, J.: Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate, Nature Communications, 11, 2201, https://doi.org/10.1038/s41467-020-15725-8, 2020. a
Nitze, I., Heidler, K., Barth, S., and Grosse, G.: Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps, Remote Sensing, 13, 4294, https://doi.org/10.3390/rs13214294, 2021. a
Nitze, I., Van der Sluijs, J., Barth, S., Bernhard, P., Huang, L., Kizyakov, A., Lara, M., Nesterova, N., Runge, A., Veremeeva, A., Ward Jones, M., Witharana, C., Xia, Z., and Liljedahl, A.: A Labeling Intercomparison of Retrogressive Thaw Slumps by a Diverse Group of Domain Experts, Permafr. Periglac. Process., 36, 83–92, https://doi.org/10.1002/ppp.2249, 2024. a, b
Nitze, I., Heidler, K., Nesterova, N., Küpper, J., Schütt, E., Hölzer, T., Barth, S., Lara, M. J., Liljedahl, A. K., and Grosse, G.: DARTS: Multi-year database of AI-detected retrogressive thaw slumps in the circum-arctic permafrost region, Scientific Data, 12, 1512, https://doi.org/10.1038/s41597-025-05810-2, 2025. a
O'Neill, H. B., Smith, S. L., Burn, C. R., Duchesne, C., and Zhang, Y.: Widespread Permafrost Degradation and Thaw Subsidence in Northwest Canada, Journal of Geophysical Research: Earth Surface, 128, e2023JF007262, https://doi.org/10.1029/2023JF007262, 2023. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse, V1 [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a
Ramage, J. L., Irrgang, A. M., Morgenstern, A., and Lantuit, H.: Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean, Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, 2018. a, b
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022. a, b, c, d, e
Rodriguez, E. and Martin, J.: Theory and design of interferometric synthetic aperture radars, IEE Proceedings F Radar and Signal Processing, 139, 147, https://doi.org/10.1049/ip-f-2.1992.0018, 1992. a
Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., and Goldstein, R.: Synthetic aperture radar interferometry, Proceedings of the IEEE, 88, 333–382, https://doi.org/10.1109/5.838084, 2000. a
Runge, A., Nitze, I., and Grosse, G.: Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr, Remote Sens. Environ., 268, 112752, https://doi.org/10.1016/j.rse.2021.112752, 2022. a
Schuur, E. A., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., Treat, C., and Turetsky, M.: Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic, Annual Review of Environment and Resources, 47, 343–371, https://doi.org/10.1146/annurev-environ-012220-011847, 2022. a, b, c
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V. E.: The changing thermal state of permafrost, Nature Reviews Earth & Environment, 3, 10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022. a
Thomas, M., Monhonval, A., Hirst, C., Bröder, L., Zolkos, S., Vonk, J. E., Tank, S. E., Keskitalo, K. H., Shakil, S., Kokelj, S. V., Van Der Sluijs, J., and Opfergelt, S.: Evidence for preservation of organic carbon interacting with iron in material displaced from retrogressive thaw slumps: Case study in Peel Plateau, western Canadian Arctic, Geoderma, 433, 116443, https://doi.org/10.1016/j.geoderma.2023.116443, 2023. a
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020. a
Van Der Sluijs, J., Kokelj, S. V., Fraser, R. H., Tunnicliffe, J., and Lacelle, D.: Permafrost Terrain Dynamics and Infrastructure Impacts Revealed by UAV Photogrammetry and Thermal Imaging, Remote Sensing, 10, 1734, https://doi.org/10.3390/rs10111734, 2018. a
Virkkala, A., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C., Sonnentag, O., Parmentier, F. W., Ueyama, M., Celis, G., St.Louis, V. L., Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B., Oberbauer, S. F., Torn, M. S., Park, S., Dolman, H., Mammarella, I., Chae, N., Poyatos, R., López‐Blanco, E., Christensen, T. R., Kwon, M. J., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem CO 2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties, Global Change Biology, 27, 4040–4059, https://doi.org/10.1111/gcb.15659, 2021. a
Wang, B. and French, H. M.: Climate controls and high‐altitude permafrost, qinghai‐xizang (tibet) Plateau, China, Permafrost and Periglacial Processes, 5, 87–100, https://doi.org/10.1002/ppp.3430050203, 1994. a, b
Wang, D., Wu, T., Zhao, L., Mu, C., Li, R., Wei, X., Hu, G., Zou, D., Zhu, X., Chen, J., Hao, J., Ni, J., Li, X., Ma, W., Wen, A., Shang, C., La, Y., Ma, X., and Wu, X.: A 1 km resolution soil organic carbon dataset for frozen ground in the Third Pole, Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, 2021. a, b, c, d, e, f, g, h
Wang, G., Peng, Y., Chen, L., Abbott, B. W., Ciais, P., Kang, L., Liu, Y., Li, Q., Peñuelas, J., Qin, S., Smith, P., Song, Y., Strauss, J., Wang, J., Wei, B., Yu, J., Zhang, D., and Yang, Y.: Enhanced response of soil respiration to experimental warming upon thermokarst formation, Nature Geoscience, 17, 532–538, https://doi.org/10.1038/s41561-024-01440-2, 2024. a
Wang, S., Sheng, Y., Li, J., Wu, J., Cao, W., and Ma, S.: An Estimation of Ground Ice Volumes in Permafrost Layers in Northeastern Qinghai-Tibet Plateau, China, Chinese Geographical Science, 28, 61–73, https://doi.org/10.1007/s11769-018-0932-z, 2018. a
Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., and Fu, B.: Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau, Science Advances, 6, eaaz3513, https://doi.org/10.1126/sciadv.aaz3513, 2020. a
Wang, Y., Xiao, J., Ma, Y., Ding, J., Chen, X., Ding, Z., and Luo, Y.: Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth’s Third Pole, Science Advances, 9, eade6875, https://doi.org/10.1126/sciadv.ade6875, 2023. a
Wang, Z.-W., Wang, Q., Zhao, L., Wu, X.-D., Yue, G.-Y., Zou, D.-F., Nan, Z.-T., Liu, G.-Y., Pang, Q.-Q., Fang, H.-B., Wu, T.-H., Shi, J.-Z., Jiao, K.-Q., Zhao, Y.-H., and Zhang, L.-L.: Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau, Journal of Mountain Science, 13, 1035–1046, https://doi.org/10.1007/s11629-015-3485-y, 2016. a
Ward Jones, M. K., Pollard, W. H., and Jones, B. M.: Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors, Environ. Res. Lett., 14, 055006, https://doi.org/10.1088/1748-9326/ab12fd, 2019. a
Werner, C., Wegmüller, U., Strozzi, T., and Wiesmann, A.: GAMMA SAR and interferometric processing, in: European Space Agency (Special Publication) ESA SP, 461, 211–219, 2000. a
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai‐Tibetan Plateau, Journal of Geophysical Research: Atmospheres, 113, 2007JD009539, https://doi.org/10.1029/2007JD009539, 2008. a
Wu, X., Xu, H., Liu, G., Zhao, L., and Mu, C.: Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau, BMC Ecology, 18, 27, https://doi.org/10.1186/s12898-018-0183-y, 2018. a
Xia, Z., Huang, L., Fan, C., Jia, S., Lin, Z., Liu, L., Luo, J., Niu, F., and Zhang, T.: Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics, Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, 2022. a, b, c, d
Xia, Z., Liu, L., Mu, C., Peng, X., Zhao, Z., Huang, L., Luo, J., and Fan, C.: Widespread and Rapid Activities of Retrogressive Thaw Slumps on the Qinghai‐Tibet Plateau From 2016 to 2022, Geophysical Research Letters, 51, e2024GL109616, https://doi.org/10.1029/2024GL109616, 2024. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Yang, J., Jiang, L., Luojus, K., Pan, J., Lemmetyinen, J., Takala, M., and Wu, S.: Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach, The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, 2020. a
Yang, Y., Rogers, B. M., Fiske, G., Watts, J., Potter, S., Windholz, T., Mullen, A., Nitze, I., and Natali, S. M.: Mapping retrogressive thaw slumps using deep neural networks, Remote Sens. Environ., 288, 113495, https://doi.org/10.1016/j.rse.2023.113495, 2023. a
Yang, Y., Rodenhizer, H., Rogers, B. M., Dean, J., Singh, R., Windholz, T., Poston, A., Potter, S., Zolkos, S., Fiske, G., Watts, J., Huang, L., Witharana, C., Nitze, I., Nesterova, N., Barth, S., Grosse, G., Lantz, T., Runge, A., Lombardo, L., Nicu, I. C., Rubensdotter, L., Makopoulou, E., and Natali, S.: A Collaborative and Scalable Geospatial Data Set for Arctic Retrogressive Thaw Slumps with Data Standards, Scientific Data, 12, 18, https://doi.org/10.1038/s41597-025-04372-7, 2025. a
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau, W. K.-M., Lettenmaier, D., Mosbrugger, V., Zhang, R., Xu, B., Dozier, J., Gillespie, T., Gu, Y., Kang, S., Piao, S., Sugimoto, S., Ueno, K., Wang, L., Wang, W., Zhang, F., Sheng, Y., Guo, W., Ailikun, Yang, X., Ma, Y., Shen, S. S. P., Su, Z., Chen, F., Liang, S., Liu, Y., Singh, V. P., Yang, K., Yang, D., Zhao, X., Qian, Y., Zhang, Y., and Li, Q.: Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis, Bulletin of the American Meteorological Society, 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019. a
Zhao, L., Zou, D., Hu, G., Du, E., Pang, Q., Xiao, Y., Li, R., Sheng, Y., Wu, X., Sun, Z., Wang, L., Wang, C., Ma, L., Zhou, H., and Liu, S.: Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau, Permafrost and Periglacial Processes, 31, 396–405, https://doi.org/10.1002/ppp.2056, 2020. a, b
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021. a
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017. a, b, c
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides,...