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Abstract. Retrogressive Thaw Slumps (RTS) are slope fail-
ures triggered by permafrost thaw that occur in ground-ice-
rich regions of the Arctic and the Qinghai-Tibet Plateau
(QTP). A strong warming trend has amplified RTS activity
on the QTP in recent years. Although the region currently
acts as a carbon sink, its permafrost-covered area (40 %) con-
tains substantial soil organic carbon (SOC) stocks. Intensify-
ing thaw-driven mass wasting may transform the QTP into
a net carbon source by mobilising previously frozen SOC
and enhancing decomposition. Yet, regional remote sens-
ing studies have not yet quantified RTS mass wasting, in-
cluding material erosion volumes and associated SOC mo-
bilisation. Analysing time-series data from digital elevation
models (DEMs) enables direct observation of RTS activity
by measuring changes in active area, eroded material vol-
ume, and the overall magnitude of surface change. However,
most available DEM sources lack the spatial resolution and
temporal frequency required for comprehensive RTS mon-
itoring. In contrast, optical data provide higher spatial res-
olution and more frequent observations, but lack elevation
information. Here, we evaluated RTS mass wasting across
the QTP from 2011 to 2020 by combining DEMs derived
from bistatic Interferometric Synthetic Aperture Radar (In-
SAR) observations of the TanDEM-X mission with annual
RTS inventories generated from high-resolution optical satel-

lite imagery and geophysical soil property data to estimate
erosion volume, ground ice loss, and SOC mobilisation. We
estimated that RTS activity on the QTP during 2011-2020
relocated 5.02%:57'25 x 107 m? previously frozen material, re-
sulting in a loss of 3.58(2)%0 x 10® m? of ground ice, and mo-
bilised 2.78(7)1?21g x 108 kg C of organic carbon. We found a reli-
able power-law scaling relationship between RTS area in the
optical RTS inventory and calculated volume change, with
o values ranging from 1.2040.01 to 1.30+0.01 (R? = 0.87,
p < 0.001) depending on the regression model used, which
may readily transform planimetric RTS area into volume es-
timates at scale on the QTP. Despite the relatively recent ini-
tiation and smaller size of RTSs on the QTP, material erosion
and SOC mobilisation over the past decade exceeded levels
in some Siberian Arctic regions, but remained up to 10 times
lower than hotspots in the Canadian High Arctic. While cur-
rent RTS impacts on the QTP are relatively modest, affecting
<0.01 % of the total permafrost area and contributing ap-
proximately 0.1 % to the regional carbon budget, the accel-
erating rates of RTS activity indicate that this phenomenon
could become increasingly significant in the future. Our find-
ings highlight the importance of regional studies in advanc-
ing our understanding of permafrost thaw-driven changes to
the carbon dynamics of rapidly changing permafrost ecosys-
tems.
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1 Introduction

Permafrost regions are rapidly warming, causing widespread
thaw and degradation (Biskaborn et al., 2019; Farquharson
et al., 2019; O’Neill et al., 2023). The permafrost thaw is
triggered by a long-term increase in air temperatures (Smith
et al., 2022) and is further amplified by various short-term
disturbances, such as periods of extreme summer tempera-
tures, high-intensity rainfall, hydrological changes, wildfires,
and anthropogenic impacts (Grosse et al., 2011; Hjort et al.,
2022; Holloway et al., 2020; Bernhard et al., 2022b; Kokelj
et al., 2015). Although approximately half of the global soil
organic carbon (SOC) stock is stored in permafrost soils in
the Northern Hemisphere (Mishra et al., 2021; Schuur et al.,
2022), ongoing permafrost decline is expected to accelerate
SOC decomposition and greenhouse gas emissions, poten-
tially triggering significant climate feedbacks (Schuur et al.,
2022; Yi et al., 2025). Due to the lack of large-scale obser-
vations and the complexity of permafrost thaw processes,
climate models do not account for the potential of such
processes when simulating permafrost carbon feedbacks (Yi
et al., 2025; Schuur et al., 2015, 2022). Existing Earth sys-
tem models exhibit significant limitations in the accounting
of soil organic carbon (SOC) and in the prediction of future
changes for global permafrost regions (Turetsky et al., 2020;
Virkkala et al., 2021; Nitzbon et al., 2020).

The largest high-altitude permafrost zone is the Qinghai-
Tibet Plateau (QTP) with a total extent of 1.06 x 10° km?
at mean elevations greater than 4000 m (Wang and French,
1994; Liu and Chen, 2000; Zou et al., 2017). Similarly to
high-latitude permafrost regions, the QTP is one of the most
climate-sensitive regions on Earth (Liu and Chen, 2000)
and has experienced a pronounced warming trend in recent
decades, with an average increase in air temperatures of
0.035°Ca~! (Yao et al., 2019). The warming trend affects
the thermal state of the permafrost: the active layer thickness
(ALT) and ground temperatures have increased, while the
regional permafrost extent declined (Cheng and Wu, 2007;
Wu and Zhang, 2008; Zhao et al., 2021; Ran et al., 2022).
Hence, the QTP is susceptible to permafrost thaw processes
that have a substantial impact on the environment and com-
munities, including threats to local transport and energy in-
frastructure, ecosystems and hydrology, as well as regional
carbon budgets and water storage capacities (Luo etal., 2019;
Li et al., 2022; Mu et al., 2017; Zhao et al., 2020; Yi et al.,
2025; Chen et al., 2024b). Permafrost thaw together with the
large SOC stocks make the QTP a potentially considerable
carbon source and an important region to monitor permafrost
thaw processes (Ran et al., 2022; Chen et al., 2024a; Yiet al.,
2025).

Retrogressive Thaw Slumps (RTS) are permafrost land-
forms that occur in ice-rich permafrost terrain when ground
ice is exposed, allowing for rapid thaw and downslope move-
ment of the resulting debris (Burn and Lewkowicz, 1990;
Kokelj and Jorgenson, 2013; Nesterova et al., 2024; Harris,
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1988; CPA et al., 2024). The landform can expand succes-
sively upslope with time due to continuous exposure and
thawing of massive and segregated ground ice, thus erod-
ing steep headwalls and mobilising thawed material downs-
lope and potentially into nearby streams and rivers (Nes-
terova et al., 2024; Kokelj et al., 2021). A gradual decline
in headwall height with upslope growth and material accu-
mulation can also result in stabilisation and recovery (Burn
and Lewkowicz, 1990; van der Sluijs et al., 2023). RTS can
reactivate in complex polycyclic ways (Krautblatter et al.,
2024). Climate warming and human disturbance have inten-
sified RTS activity not only in the Arctic (Lantz and Kokelj,
2008; Bernhard et al., 2022a; van der Sluijs et al., 2023),
but also on the QTP. In recent years, the plateau experi-
enced strong expansion and initiation rates of RTS mainly on
gentle north-facing slopes with fine-grained soils and high
ground ice content. More than 30 % of all RTS activity is ob-
served in the Beiluhe River Basin located in the central QTP,
where most activity started after 2010 (Luo et al., 2019, 2022;
Huang et al., 2020; Xia et al., 2022, 2024). RTS retreat rates
are relatively high, with mean rates up to 25ma~! (2017
2019) (Huang et al., 2021), although these are similar to
other highly active RTS sites in Alaska, northwest Canada,
the Canadian High Arctic, and Siberia (Ward Jones et al.,
2019; Lacelle et al., 2015, 2010; Lantuit and Pollard, 2008;
Lantz and Kokelj, 2008; Leibman et al., 2021).

Due to their complex spatiotemporal dynamics, moni-
toring RTS activity and assessing their impact on regional
carbon cycling remains challenging and is still associated
with considerable uncertainties. Most studies have focused
on thermokarst hotspots in the central and northeast regions
of the QTP, conducting local to subregional analyses using
high-resolution satellite imagery and (semi)automatic detec-
tion algorithms (Luo et al., 2022; Huang et al., 2021; Xia
et al., 2022). A recent study provided an annual inventory
of more than 3000 RTS features across the QTP from 2016
to 2022, using high-resolution optical PlanetScope imagery
and a semiautomatic detection approach. This effort rep-
resents the first high-quality regional-scale dataset that de-
scribes RTS initiation and planimetric expansion (Xia et al.,
2024). Nevertheless, to quantify RTS-induced mass wasting
and evaluate the potential implications on permafrost car-
bon mobilisation, additional datasets are required - partic-
ularly those capturing lateral and vertical change and soil
properties. By deriving elevation change from pairs of high-
resolution digital elevation models (DEMs) with a tempo-
ral baseline within the affected planimetric RTS boundary,
volume changes of the eroded material can be obtained by
air- or spaceborne LiDAR, stereo optical photogrammetry,
or bistatic Interferometric Synthetic Aperture Radar (InSAR)
measurements (Lantuit and Pollard, 2005; Van Der Sluijs
et al., 2018; Ramage et al., 2018; Dai et al., 2024; Bernhard
et al., 2020). Data from the German TanDEM-X mission’s
X-band bistatic SAR enables the creation of global multi-
temporal DEMs with approximately 10 m spatial resolution
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and 2-3 m vertical accuracy (Krieger et al., 2007) and has
been shown to be suitable for pan-Arctic monitoring of RTS
mass wasting (Bernhard et al., 2022b; Maier et al., 2025).
Using in-situ measurements or modelled estimates of SOC
stocks and ground ice content, we can combine this informa-
tion with volumetric change estimates to estimate the amount
of formerly frozen organic carbon that has been mobilised.
Such approaches have been applied to assess carbon mobil-
isation due to coastal erosion and slumping in Canada (Ra-
mage et al., 2018), a severe heat wave in Siberia (Bernhard
et al., 2022b), and more recently at large thaw-driven mass
wasting sites across the pan-Arctic (Dai et al., 2025). How-
ever, to date, there have been no regional-scale empirical esti-
mates of either material erosion volume or SOC mobilisation
for the QTP.

The volume of eroded material of an RTS scales with
its area following power-law relations that characterise its
growth dynamics. Several studies adapted the so-called area-
volume or allometric scaling from temperate landslide re-
search (Jaboyedoff et al., 2020). Commonly, area-volume
scaling is performed using an ordinary least squares (OLS)
approach to fit a linear model to the log-transformed RTS
area and volume (change) to obtain scaling coefficients.
However, distinct differences in the estimated scaling laws
can be present between geographic regions and based on
the methodological approach used. Bernhard et al. (2022a)
used an orthogonal distance regression (ODR) (Boggs and
Rogers, 1989) instead of OLS to fit the straight line to
the log-transformed RTS area and volume change based on
TanDEM-X DEM pairs (2010-2016) assuming that both vol-
ume change 8V and area change §A are affected by mea-
surement error. The authors report a scaling coefficient of
1.15 for several Arctic sites. Dai et al. (2025) reported a pan-
Arctic scaling coefficient of 1.30 based on OLS and Arc-
ticDEM pairs (2012-2022) while Kokelj et al. (2021) and
van der Sluijs et al. (2023) report coefficients of 1.36 and
1.41, respectively, in the Canadian Arctic based on OLS
and pre-disturbance terrain reconstruction (until 2018). A
recent study estimated a scaling coefficient of 1.20 for al-
most 1500 RTS on the QTP (Ma et al., 2025) based on DEM
mosaics and commercial stereo-optical DEMs with vary-
ing dates (until 2021-2025). Robust empirical scaling re-
lationships can be helpful to potentially constrain regional-
scale estimates on material erosion and carbon mobilisation
when only optically derived RTS area estimates are avail-
able. However, differences in the scaling model and temporal
and spatial resolution of the elevation data impair the (inter-
)regional transferability of the estimated coefficients.

In this study, we present the first regional empirical anal-
ysis on RTS mass wasting due to RTS activity on the QTP
during the last decade. The elevation change from TanDEM-
X-derived DEMs between 2011 and 2020, in combination
with the high-quality RTS delineations of Xia et al. (2024)
and soil property datasets for the QTP, allowed us to estimate
the volume of eroded material and the related allometric scal-
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ing coefficients, associated ground ice loss, and mobilisation
of SOC. We aim to show that the combination of multimodal
and multitemporal datasets allows for a more detailed analy-
sis of RTS mass wasting dynamics and further increases our
understanding of the regional carbon budget impacts.

2 Data and methods
2.1 Study site

Our study region, the QTP, is located between 26 and 38° N
in the south-west of China at average elevations higher than
4000 m above sea level (Fig. 1a). Permafrost covers 40 % of
the plateau (Wang and French, 1994; Liu and Chen, 2000;
Zou et al., 2017). The permafrost ground ice content aver-
ages around 30 %, decreasing spatially from north to south
and west to east (Zou et al., 2024) (Fig. 1b). Compared
to the Arctic, the ALT is high (ALT = 2.34m) (Ran et al.,
2022), while permafrost thickness is relatively low (< 60—
350m) (Zhao et al., 2020). A dry and cold climate in the
northwest transitions to a warmer and wetter climate in the
southeast of the plateau (Chen et al., 2015). The QTP per-
mafrost also stores large amounts of SOC with a median es-
timate of 1.41 x 103 kg C (or 14.1 PgC) for the top 3 m and
4.92 x 1013 kgC (or 49.2PgC) for the upper 25m of soils
(Wang et al., 2020; Chen et al., 2024a). The SOC stocks in-
crease from west to east and from north to south (Wang et al.,
2021; Chen et al., 2024a) (Fig. 1c¢).

Based on the spatial clustering of RTS identified by Xia
et al. (2024), we divided the study area into five subregions,
including: West, West-Central, Central, East, and Northeast
(Fig. 1a). These subregions are used to analyse the spatial
patterns of material erosion and mobilisation of SOC induced
by RTS activity, and area-volume-scaling across the QTP. To
validate the estimated volumes of RTS material erosion de-
rived from integrated optical and elevation remote sensing
data, we established the following validation sites covering
400km? each (Fig. 1a): Western Kunlun, Gaize, Southern
Nima, Beiluhe River Basin, and Qilian Mountain. We se-
lected sites based on (1) the presence of RTS activity located
within diverse geographic and terrain conditions identified
by Xia et al. (2024), (2) the availability of field observations,
and (3) the sufficient coverage of TanDEM-X observations to
ensure consistent data quality for validation purposes.

2.2 Workflow and data processing

We used bistatic TanDEM-X SAR observations to generate
multi-temporal DEMs that cover all RTS locations in the RTS
inventory of Xia et al. (2024). By differencing DEMs from
2011 and 2020 and combining the resulting elevation change
with the annual high-resolution RTS inventory, we estimated
the volume change of the eroded material induced by RTS ac-
tivity on the QTP (Fig. 2a, b). Based on recent datasets on the
permafrost state and soil conditions including ALT, ground
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Figure 1. Overview of the study region, the Qinghai-Tibet Plateau (QTP). All data is gridded into 50 x 50 km? units for visualisation purposes.
(a) Distribution and spatial density of RTS (Xia et al., 2024). We divided the QTP into five subregions (West, West-Central, Central, East,
Northeast) and distributed validation sites (400km?2) across the QTP. The background depicts the spatial distribution of permafrost terrain
on the QTP (Zou et al., 2017). (b) The ground ice content on the QTP for an exemplary depth layer (2-3 m) is highest in the central part
of the plateau (Zou et al., 2024). (¢) Soil organic carbon (SOC) stocks aggregated for the first 3 m depth show an increasing trend from the

northwest to the southeast QTP (Wang et al., 2021).

ice content (GI) content, and SOC stocks, we modelled the
material erosion volumes into annual SOC mobilisation rates
for all RTS present on the QTP until 2020 (Fig. 2¢). We eval-
uated the uncertainty in the estimated erosion volume and
the derived properties, examining how spatial resolution af-
fects errors in material erosion estimates (Fig. 2d). Similar to
temperate landslides, scaling laws between the planimetric
area and the erosion volume have been used to improve our
understanding of the variability in geomorphology, process
dynamics, and the drivers and controls of RTS.

2.2.1 Digital Elevation Model generation and
processing

We used satellite observations from the German Synthetic
Aperture Radar (SAR) mission TanDEM-X to generate tem-
porally resolved DEMs based on bistatic SAR interferometry
(InSAR) (Krieger et al., 2007; Bojarski et al., 2021). We ex-
cluded observations with height-of-ambiguity (HoA) values
below 15 and above 80 m to guarantee a vertical accuracy be-
tween 2 and 3 m in flat areas (Martone et al., 2012; Bernhard
et al., 2020). We used TanDEM-X observations throughout
the year to achieve full spatial coverage on the QTP, although
previous studies in the Arctic have used only winter data
to avoid errors caused by dense and wet tundra vegetation
during the growing season or melting snow packs (Bernhard
et al., 2020, 2022a; Maier et al., 2025). The potential errors
introduced by vegetation characteristics and snow cover are
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likely to be negligible in this study due to the commonly low
canopy heights of the local vegetation (alpine meadows, arid
desert, bare ground) (Wang et al., 2016; Xia et al., 2024), and
shallow average snow depths well below the height sensitiv-
ity of the TanDEM-X DEMs (Che et al., 2008; Yang et al.,
2020).

Using the global 12 m spatial resolution TanDEM-X DEM
as a reference, pairs of bistatic SAR observations were pro-
cessed with the GAMMA Remote Sensing software (Werner
et al., 2000) to generate a series of DEM products follow-
ing a standard InSAR processing workflow (Fig. 2a). Key
steps include the generation of a differential interferogram,
phase unwrapping, phase-to-height conversion, update of the
reference DEM with the computed height difference, and
the orthorectification or geocoding of the resulting DEM to
map coordinates. Further information about the DEM gen-
eration pipeline can be found in Bernhard et al. (2020) and
Maier et al. (2025). SAR shadow and layover areas, as well
as the regions in the SAR images that experienced low co-
herence (< 0.3), were not considered in subsequent pro-
cessing (Bernhard et al., 2020; Maier et al., 2025). We es-
timated the associated random elevation error o, of each
pixel for all generated DEMs using the interferometric co-
herence, HoA, and the multilook window of 4 x 4 pixels
(Krieger et al., 2007; Rosen et al., 2000; Rodriguez and Mar-
tin, 1992). We reprojected all DEM products to a common
horizontal coordinate system, WGS 84 / NSIDC EASE-Grid
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Figure 2. Data processing and validation: (a) DEM generation from TanDEM-X SAR observations based on bistatic interferometric SAR
(InSAR) processing and post-processing with data tiling, averaging, and differencing including coregistration routines resulting in elevation
change maps between time T1 and T2. (b) We extract the elevation change (T2-T1) within the boundaries of the temporally matching optical
RTS labels of Xia et al. (2024) divided into negative elevation change (ablation) and positive elevation change (deposition of thawed material)
within the RTS delineation. (c) Estimation of the properties of RTS mass wasting including material erosion calculated from negative
elevation change within the RTS boundary, ground ice (GI) loss, and SOC mobilisation. (d) Validation at selected sites by (1) evaluating
how accurately we can estimate the active erosion area § A and the material erosion volume 3V based on the optical RTS delineations and
(2) by comparing approximate headwall heights obtained from very-high-resolution (VHR) DEMs of six RTS in the Beiluhe River Basin

from photogrammetric drone surveys to our results.

2.0 Global (EPSG:6933) with an ellipsoidal vertical refer-
ence, resampled to 10 m spatial resolution, and split all data
into 100 km>-tiles with a small spatial overlap to avoid any
edge effects. We corrected the DEMs for vertical offsets
and tilts and co-registered the DEM pairs using the Python
package xDEM (Hugonnet et al., 2021). Due to the non-
uniform temporal coverage of TanDEM-X observations on
the QTP, we decided to calculate the elevation change &k
between two time periods. We averaged all available DEMs
for the time period T1 that spans one summer period (Jan-
uary 2011-April 2012) and for T2 that spans two summer
seasons (September 2017-January 2020). In case of the ex-
istence of several DEMs in the same location during the
same time period, we calculated a weighted average per pixel
based on interferometric coherence before computing the el-
evation difference T2-T1 for each tile with RTS activity.
For stable terrain, the resulting elevation change products
were normally distributed around zero with a standard de-
viation representing the achievable vertical accuracy of the
DEM pair. 64 ~ Om indicates stable terrain, while negative
and positive values reflect material ablation and deposition
of thawed materials, respectively.
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2.2.2 Multimodal RTS mass wasting quantification

Xia et al. (2024) created a high-quality regional inventory of
annual RTS delineations between 2016 and 2022 based on
a semi-automated deep learning approach with optical high-
resolution PlanetScope imagery (Xia et al., 2022) (Fig. 2b).
Spectral information in optical images distinguishes undis-
turbed from disturbed terrain, using differences in bare-
ground and vegetation cover. RTS delineations derived from
optical imagery often incorporate a broader area than the ac-
tive ablation zone, including zones of recent activity and de-
positional sections of the slump floor (i.e., features not di-
rectly involved in ongoing material loss), while excluding
stable zones of past disturbance masked by lush vegetation
growth. Therefore, we calculated the volume of eroded ma-
terial §V for each RTS by summing only the negative eleva-
tion changes 8/ o, multiplied by the area of the DEM pixel
(Fig. 2¢).

§V=>"8hoom-100m> (1)

The DEMs of T2 may consist of up to two summer seasons
of RTS activity, depending on the availability and spatial dis-
tribution of the observations. If the data from T2 consisted of
observations from only one year, the optical RTS delineation
from the matching year was selected as the RTS delineation

The Cryosphere, 19, 4855-4873, 2025
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for the mass wasting calculation. If observations from several
years contributed to the DEM of T2, we assigned the optical
RTS delineation that matched the most recent DEM to ensure
we captured the full planimetric extent of the RTS. Neverthe-
less, if multiple observations contributed to the T2 DEM, the
multi-year averaged erosion volume may underestimate the
actual erosion volume.

Since previous studies on allometric scaling use different
methods to fit a straight line to the log-transformed RTS area
and volume change, we apply two common models: We use
(1) an orthogonal distance regression (ODR) model (Boggs
and Rogers, 1989) used by Bernhard et al. (2022a) for sev-
eral North American and Siberian RTS sites, and (2) an ordi-
nary least squares (OLS) approach applied by, for example,
Kokelj et al. (2021), van der Sluijs et al. (2023), and Dai et al.
(2025), to predict the eroded volume §V based on the plani-
metric area 6 A with an exponential scaling coefficient & and
a scaling factor ¢ (Jaboyedoff et al., 2020) for the time inter-
val T1-T2:

8V =c-8A“. @

In particular, A stands for the RTS area that undergoes a
negative elevation change or ablation within the monitoring
period of T1-T2. To test the influence of different definitions
of the RTS area between delineations on optical images and
the elevation change maps, we also performed area-volume
scaling with the entire RTS delineation area Ax;,, which does
not only include zones of ablation § A but often also bare soils
disturbed by mud flows and the deposition of thawed material
in the slump floor (Fig. 2b).

To estimate how much SOC is stored in the previously
frozen permafrost soils mobilised by RTS activity during the
study period, ground conditions must be known or modelled
(Fig. 2¢). Therefore, we integrated existing datasets for the
QTP that define (1) ALT (Ran et al., 2022), (2) GI content
between 2 and 10 m (Zou et al., 2024), and (3) SOC stocks
between 0 and 3 m depth (Wang et al., 2021). All datasets
are sampled in 1 km?-cells. Ran et al. (2022) estimated per-
mafrost thermal state variables, including ALT for the pan-
Arctic permafrost region and the QTP with 452 field mea-
surements with statistical learning models that achieve a root
mean square error (RMSE) < 1 m (1). Zou et al. (2024) esti-
mated the GI content up to 10 m depth with a random forest
algorithm based on climate, terrain and soil variables and 664
borehole records with R? > 0.8 for all depth layers (Fig. 1b,
(2)). Wang et al. (2021) applied a set of machine learning al-
gorithms together with environmental variables and soil pro-
file data from 572 field measurements to predict the spatial
distribution of SOC in the upper 3 m, including an uncer-
tainty layer on the QTP. The model achieved R? values be-
tween 0.66 for the upper 30 cm and 0.54 for the first metre
(Fig. 1c, (3)). Since the SOC stocks dataset is limited to the
upper 3 m, we applied an exponential decay model to extrap-
olate the values to lower depths where we propagated the un-
certainty estimates of 2-3 m (Bernhard et al., 2022b). Based
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on the assumptions that (1) ground ice starts at the depth
where the active layer ends and (2) SOC is not present in
any form in the massive ground ice, we sampled the negative
elevation change within each RTS label to calculate the SOC
mobilisation per RTS

n(A)n=10
SOCrrs = Y Y [SOC(d<ALr)
d=1
+ SOC(d= ar) (1 — GI/100)] 100 m? (3)

with the number of pixels n, the RTS ablation area §A [m],
the depth of the active layer ALT (> Om), ground ice con-
tent GI [%] and soil depth d (0 < d < 10 m). If the depth d is
greater than the ALT, then only the part of the eroded material
that is not massive ground ice is added to the total SOC mo-
bilisation. Similarly, we estimate the volume of RTS-induced
ground ice loss across the depth layers by scaling the eroded
material by 1 — GI/100. To illustrate, if we sample at an ex-
emplary RTS location an ALT =1.8m and GI,_3, =31 %
we round the ALT to 2 m. For 0-2 m depth, we compute the
SOC mobilisation without scaling for ground ice since we
assume no presence of massive ice in the active layer. For the
depth layer 2-3 m we reduce the SOC mobilisation by 31 %.

We report the total estimates of the volume of eroded ma-
terial, the mobilisation of SOC, and the loss of ground ice
as the sum over all RTS in the study region and throughout
the study period. By dividing SOC mobilisation by the num-
ber of years between T1 and T2, we estimate a yearly SOC
mobilisation rate. However, the values might be partially bi-
ased since we cannot distinguish between RTS that have been
active for the entire study period and those that may have
only been active for a shorter period of time (Bernhard et al.,
2022b). We normalise our results by the size of the study area
and the number of RTS to ensure comparability to the results
of previous studies.

2.2.3 RTS material erosion error assessment and
validation

Since we aim to integrate two datasets with different spatial
resolutions (DEM raster: 10 m, optical RTS inventory vec-
tors: 3m), we have to account for the ambiguity produced.
Negative elevation change pixels might only partially inter-
sect the RTS delineation instead of being entirely contained.
We chose to rasterise the optical RTS delineations into two
parts: an upper-bound RTS area §A™ that includes all inter-
sected pixels, and a lower-bound area § A~ with only fully
contained pixels. Together with the estimated elevation er-
ror oy, of the DEM we compute the upper and lower volume
change bounds

sVt= 3" (8h<om—on)-100m’ “4)
n(SAT)
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and

SV = Z (8h—om + on) - 100m? 5)
n(A-)

that indicate the uncertainty induced by differences in spa-
tial resolution, boundary mismatch, and vertical DEM error.
Together with the uncertainty estimates of the SOC stocks,
we propagate the error bounds to all reported quantities. We
assume the RTS area Axj, is error-free, despite biases and
subjective influences in both automated and manual RTS seg-
mentation, which are difficult to measure (Nitze et al., 2024,
Maier et al., 2025).

In addition to reporting data uncertainties, we performed
a two-fold validation at five validation sites (Fig. 1a): (1) We
manually delineated the RTS ablation area in the elevation
change maps, where a distinct pattern of negative elevation
change is visible to the human eye. At all validation sites,
the elevation change maps consisted of TanDEM-X DEMs
from 2011 and 2019. We statistically compared the delin-
eations of the RTS inventory (Xia et al., 2024) from the same
year (2019), the year before (2018) and the year after (2020)
to the manually delineated ablation zones to investigate the
agreement between the datasets in terms of RTS quantities,
(ablation) area, and material erosion volume (Fig. 2d). (2) At
the Beiluhe River Basin site, we compared the TanDEM-X-
derived elevation change with very high-resolution (VHR)
photogrammetric DEMs from an in-situ drone campaign
covering in total six RTSs in August 2020. A DJI P4 Mul-
tispectral was used to obtain the multispectral drone images.
The resulting DEMs have a spatial resolution of < 1 m and
a georeferencing accuracy of 0.2 m RMSE. Since no VHR
DEM was available for T1, we could not perform DEM dif-
ferencing and directly validate our volume change estimates.
Based on the hillshade VHR DEMs, we manually delineated
the approximate location of the headwall with the help of
transect profiles (Fig. 2d). We defined small buffer zones
(~ 5m) and randomly distributed points (n = 100 per RTS)
on both sides of the headwalls that represent the elevation of
stable ground hggple and the RTS slump floor hrts, respec-
tively. We computed the average headwall height Ayyr per
RTS as the median difference between hgapie and Arts. The
monitored RTS were relatively small (< 10* m?) and shallow
(hvHR < 4 m). Defining a headwall position and applying the
same methodology with TanDEM-X DEMs is not feasible
due to the coarser resolution. Therefore, we chose to compare
the estimated headwall heights based on the VHR DEMs
with the maximum negative elevation change 8hm,x that we
estimated based on TanDEM-X elevation change maps, as-
suming that the largest height loss aligns with the largest ma-
terial ablation and is located close to the headwall.

https://doi.org/10.5194/tc-19-4855-2025

3 Results

3.1 RTS mass wasting on the QTP between 2011 and
2020

Out of 3613 RTS delineations of Xia et al. (2024) that we
matched with the generated elevation change maps, we ex-
cluded 2 % (71 RTS) from further analysis due to low SAR
coherence or SAR layover/shadow regions. For these dis-
carded RTS, reliable erosion volume estimates were not pos-
sible to achieve due to the low confidence in DEM quality.
We estimated a total volume change of eroded material
8V of 5.022%2° x 10’ m? induced by RTS activity on the
QTP between 2011 and 2020 (Fig. 3a). Approximately half
of the volume change originates from 0—1 m, 28 % from 1-
2m, and 13 % from 2-3 m depth. On average, 65 % of the
entire delineated areas Axi, of the RTS inventory were ac-
tively eroding between 2011 and 2020. The median ablation
area A per RTS was 5200 m? compared to the full delin-
eation Axi, (including the accumulation and inactive parts
of an RTS) of 8000 m?. We estimated a median volume loss
of 6534 42284 m>. When fitting a linear model to the log-
transformed area § A and material erosion volume §V based
on (1) OLS and (2) ODR, we found power-law relationships
for the area-volume scaling of RTS on the QTP (Fig. S1a) of

8Vopr = (0.0940.01) - §A1-30£0.01
with R* = 0.87 (p < 0.001) ©

and

§VoLs = (0.22 £0.01) - § A 1204001
with R* = 0.87 (p < 0.001). -

For ODR, we obtain the same scaling coefficient (¢opr =
1.30, ¢ = 0.05, Fig. S3a) when we use the entire area of the
RTS delineations Axi, instead of solely the ablation area
JA yet a lower scaling coefficient for computations based
on OLS (aoLs = 1.11, ¢ = 0.29, Fig. S3a). However, the fit
is slightly noisier (R> =0.75 for ODR and R? =0.77 for
OLS). An « value between 1.11 and 1.30 indicates that RTS
on the QTP followed a relationship between a growing scar
zone with constant depth (« = 1.0) and growth with a con-
stant width-depth ratio (o = 1.5) during the last decade and
fall in the range of soil landslides (1.1-1.4) based on the in-
vestigated scaling relations of landslides in temperate climate
regions (Jaboyedoff et al., 2020; van der Sluijs et al., 2023).

We estimated that 3.58(2)%0 x 10°m? of massive ground
ice has been lost on the entire QTP during the last decade
(Fig. 3b). Approximately 64 % of the thawed ground ice
was located in the first metre under the active layer (2—
3m), 32 % between 3 and Sm and the remaining 4 % be-
low 5m depth. Based on the SOC stocks dataset (Wang
et al., 2021), we calculated a total SOC mobilisation of
2.788:?? x 103 kgC (Fig. 3c) and annual SOC mobilisation

The Cryosphere, 19, 4855-4873, 2025



4862

(a) 80°E

K. Maier et al.: Quantification of mass wasting and carbon mobilisation from retrogressive thaw slumps

90°E 100°E 100°E P
z . o~ o 2
% QTP RTS mass wasting (2011 - 2020) A %}\\ P B [ E i z
N Material erosion volume: 5.0x107 m? (0.8x107 m? - 25.3x107 m3) \5‘\ T~ — oo . >
Ground ice loss: 3.6x10° m? (0.3x10° m? - 28.0x10° m?) ll, q‘}ﬂrﬁ" manaE o B \
OC mobilisation: 2.8x10° kg C (0.1x10° kg C - 8.0x10° kg C) B H | B N
z ¢ o PR \
o g o B = 5
< N— 27" B
2 N N B 0 m] ,/ 8
”\Sw\ ~— RTS ground ice Iosg’[mg( ) N /i\ z
. = C<t0 [oe- 1o W00 YT
e [ ]102- 10°[10¢ - 10°[l> 10° v
S o
J (c) 80°E 8
% T Z
Y Y ™~
= kM\;\\ R é ~~ — 7 ;Y
o A N N $
5 aﬂég—‘ ] LB% .
T S ‘\L
\g} = {
i . T g = /8
z RTS material erosion volume [m?] RTS OC mobinsaﬁb;f[kg c] ( =
Ye)
N []<10° [ 104-10° M 10°- 107 — [ ]<10° []10¢ - 10 [llvoe- 107 //‘w’”\ g\»)
" ]10°-10¢ [l 10°-10° |l > 107 0 250 500km [ ]10°- 10* 105 - 10° > 107 e

Figure 3. Total RTS mass wasting on the QTP between 2011-2020. All data are aggregated in 50 x 50 km-tiles for visualisation purposes.
For all mass wasting quantities including (a) material erosion volume, (b) total GI loss, and (c) total SOC mobilisation, the central QTP

shows the highest values.

rates of 0.35 x 108kgCa~!. The first metre of soil con-
tributed approximately 76 %, the second 14 %, and the third
8 % to the total SOC mobilisation.

Xia et al. (2024) found 75 % of RTS activity in the cen-
tral QTP, including the highest area expansion rates. Figure 4
shows a similar pattern of 78 % of material erosion volume,
89 % of ground ice loss and 81 % of SOC mobilisation at-
tributed to the central QTP. We found that even though the
central Plateau exhibited the highest absolute amounts due
to the highest density of RTS, individual RTS in the north-
eastern QTP eroded on average more material (Fig. 4a). The
scaling coefficients range from aopr = 1.27-1.34 (R?> =
0.77-0.89, p < 0.001) and aors = 1.11-1.23 (R? =0.79-
0.90, p < 0.001) in the West to East subregions to aopr =
1.47+0.05 (R* =0.87, p < 0.001) and o5 = 1.34 4+ 0.04
(R*=0.87, p < 0.001) in the northeast QTP. Based on Zou
et al. (2024), the GI content is highest in the central subre-
gions (median of 32.8 % in central and 32.6 % in the west-
central QTP), where we also found the highest total and av-
erage ground ice loss (Fig. 4b). The lowest GI content was
present in the northeast (median of 0 %, mean of 10.7 %).
The total amount of SOC mobilised from RTS activity for
the QTP subregions showed a pattern similar to material ero-
sion and ground ice loss: the central QTP dominated all RTS
mass wasting quantities through the largest number of RTS
present. The average SOC mobilisation per RTS increased
from the west to the northeast QTP (Fig. 4c). Details can be
found in the Supplement (Table S1a, b and Fig. S2).

The Cryosphere, 19, 4855-4873, 2025

3.2 Assessment of InSAR DEM- and optical-based
monitoring of RTS mass wasting on the QTP

For the validation sites, we compared the delineations (2018-
2020) of the RTS inventory (Xia et al., 2024) to the ablation
zones we manually identified on the elevation change maps
based on TanDEM-X DEMs (2011-2019). Out of a total of
445 RTS in the RTS inventory, we identified 290 in the lower-
resolution elevation change maps, which accounts for an F1
score of 0.63. 17 RTS were missed in the RTS inventory,
while 155 RTS present in the RTS inventory were not dis-
tinguishable from background noise in the elevation change
maps. Most of the validation sites showed a good agreement
between the two datasets. However, in Western Kunlun (A
in Fig. 1a) only 55 % of the RTS in the RTS inventory were
detectable in the elevation change maps. More details on in-
dividual results at the test sites can be found in Table S2a
and b.

Visually, the delineations from the RTS inventory fit well
with the spatial patterns of the TanDEM-X elevation change
map, with most of the ablation zone being covered. Due
to the lower spatial resolution of the DEM, the differences
between the delineations from the RTS inventory of 2018,
2019, and 2020 are rather small in this example (Fig. 5b).
The total RTS area Axj, consists of the material erosion
zone (=negative elevation change) which was growing be-
tween 2018 and 2020, and the material accumulation zone
(= positive elevation change) which stayed relatively con-
stant across time. For all analysed years, the total RTS area
was distinctly larger than the sum of the manually delin-
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Figure 4. RTS mass wasting quantities in the QTP subregions between 2011 and 2020: The first row displays box plots for values associated
with individual RTS, the second row bar charts for the total quantities across the subregions, and the third row additional data that vary
between the columns. For all plots, the computed uncertainty is reported with error bars. (a) RTS material erosion and area-volume scaling
coefficients for the subregions with R? values between 0.77/0.79 (p < 0.001, West) and 0.89/0.90 (p < 0.001, Central) computed based
on ODR (black dots)/OLS (purple dots). (b) RTS GI loss and the distribution of GI content (Zou et al., 2024). (¢) RTS-induced SOC
mobilisation and the distribution of SOC stocks 0-3 m (Wang et al., 2021). Number of RTS per subregion: West = 170, West-Central = 523,

Central = 2688, East =76, Northeast = 140.

eated erosion areas. When only considering the ablation
zone within the RTS delineation, the difference was smaller
(Fig. 5b). The actual average RTS ablation area based on
the manual delineation was 1.29 x 10* m2, which is rela-
tively close to the RTS inventory: 0.98 x 10* m? in 2018,
1.13 x 10*m? in 2019, and 1.35 x 10* m? in 2020, account-
ing for 62 % to 64 % of the total RTS area Axi,. However, in
the high-resolution PlanetScope images used as the basis for
the RTS inventory, considerably smaller RTS could be identi-
fied compared to the TanDEM-X DEMs. We found that RTS
monitoring using TanDEM-X can only identify RTS with
sizes larger than 103 m? (Fig. 5d). However, in our analy-
sis of the entire QTP, only 6 % of 3613 RTS had ablation
areas below this value. The total volume of material erosion
computed with the RTS inventory differed only minimally
from the volume calculated based on the manual delineations

https://doi.org/10.5194/tc-19-4855-2025

(Fig. 5e). We estimated a total volume §V of 8.47 x 10% m?,
9.98 x 10° m?, and 10.97 x 10° m? for the RTS inventory de-
lineations of 2018, 2019, and 2020, respectively, compared
to an erosion volume of 9.94 x 10® m? defined by the manual
delineations. The uncertainty of the estimated material ero-
sion volume is larger for the results based on the delineations
of the RTS inventory compared to the results based on man-
ually delineated ablation areas (Table S2b).

We used VHR DEMs to further validate our results. Fig-
ure 5f shows an adequate fit between the maximum elevation
changes §hmax computed with TanDEM-X DEMs and the
delineations of the RTS inventory and the average headwall
height calculated from the VHR DEMs at six RTS locations.
Details can be found in Table S3. However, the small sam-
ple size does not allow meaningful statistical analysis and,
therefore, only allows for a qualitative comparison.
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Figure 5. Compatibility and accuracy assessment aggregated for all validation sites: (a) RTS at the Beiluhe River Basin site in an high-
resolution optical image from 2018 (ESRI Satellite Basemap) and on a TanDEM-X elevation change map (2011-2019) with delineations
(2018-2020) from the RTS inventory (Xia et al., 2024) (solid lines). The manually delineated ablation area (= negative elevation change)
is visualised by a dashed line. The RTS has grown over the course of the three years and its headwall extended upslope. The delineations
from the RTS inventory based on optical images and disturbances of the vegetation cover include not only ablation zones but also material
accumulation further downslope (= positive elevation change). (b) Sum of ablation and accumulation area based on the elevation loss/gain
pixels for the delineations of the RTS inventory. Delineations of the RTS inventory tend to cover a larger area than actual ablation area
distinguishable on the DEM. (c) Distribution of the RTS ablation area. Due to the higher resolution of the optical images compared to the
TanDEM-X DEMs, smaller RTS can be distinguished from the image background. Only small differences can be observed between the
years. (d) Sum of material erosion volume based on the delineations of the RTS inventory and the negative elevation change. The volume
computed from the 2019 delineation was closest to the actual erosion volume while 2018 under- and 2020 overestimates the actual erosion
volume. (e) For six RTS at the Beiluhe River Basin site (D in Fig. 1a), we compared the maximum elevation loss 8/max of the TanDEM-X
elevation change within the 2020 delineation of the RTS inventory to the average headwall height derived from drone-based single-time-step
VHR DEMs (summer 2020). We assume that the maximum elevation loss can be used as an approximation of the headwall height of an RTS.

4 Discussion estimated rates ranging from < 0.5 x 10°m3a~! in Alaska
(Fig. 6, location 5) and the Siberian Arctic (6-8) to 7.16 x

4.1 RTS activity, material erosion, and area-volume 10°m3a~! in the Canadian Arctic (1-4) between 2010 and
scaling across permafrost regions 2017. With 5.2 RTS per 100 km? between 2010 and 2020, the

QTP has an RTS density approximately half of that observed

Previous research has investigated material erosion volumes between 2010 and 2017 on Banks Island (2) (Bernhard et al.,

(Lantuit and Pollard, 2005; Kokelj et al., 2015; Giinther et al., 2022a), yet more than double that of all other Arctic sites in-
2015) and allometric scaling relationships for thaw-driven vestigated. Over the past decade, RTS on the QTP displaced
mass wasting primarily in regions < 10*km? in the Arc- 101.8 m3a~! km~2 material, which is roughly 4, 6, and 10
tic (Kokelj et al., 2021; van der Sluijs et al., 2023) and re- times less than the Canadian hillslope RTS hotspots, the Peel
cently on the QTP (Ma et al., 2025). At a larger spatial scale, Plateau (4), Ellesmere Island (1), and Banks Island (2), re-
comparable to our study, Bernhard et al. (2022a) estimated spectively (Lewkowicz and Way, 2019). The remaining sites

annual material erosion rates for ten sites across Canada, investigated by Bernhard et al. (2022a) in the Canadian (3)
Alaska, and Siberia, covering a total area of 220000 kmz, and Siberian (6—8) Arctic are characterised by smaller and
using DEMs derived from TanDEM-X observations. Simi- shallower RTS located on lake shores in relatively flat terrain
larly, Dai et al. (2025) used ArcticDEM time series to as- and exhibited less than half the volume change rates observed
sess volumetrics and area-volume scaling across other Arc- on the QTP (Fig 6b).

tic sites. On the QTP, we found RTS material erosion rates
of 6.368%‘% x 10°m3a~!, whereas Bernhard et al. (2022a)
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Figure 6. Comparison between RTS on the QTP and in Arctic permafrost regions with respect to material erosion and area-volume scaling.
(a) Map of the Arctic sites investigated by previous studies: Kokelj et al. (2021) and van der Sluijs et al. (2023) estimated erosion volume and
area-volume scaling (OLS) based on high-resolution airborne DEMs and pre-disturbance reconstruction in northwestern Canada. Bernhard
et al. (2022a) studied RTS area-volume relations based on TanDEM-X DEMs (ODR) at eight sites in North America and Siberia between
2010 and 2016. (b) RTS density and material erosion volume per unit area for all sites reported in Bernhard et al. (2022a). RTS density and
erosion volume are consistently higher on the QTP compared to Siberia and in a similar magnitude as the North American sites. (¢) The
area-volume scaling coefficients (ODR) reported by Bernhard et al. (2022a) are on a similar magnitude as «gpr of the QTP. The Siberian
sites have generally lower a-values while Banks Island (2) and Peel Plateau (4) are closest to the QTP’s «gpr. Both Canadian sites (2, 4) are
dominated by hillslope RTS compared to a prevalence of lakeshore RTS in Siberia (6-8). The coefficients based on OLS reported by Kokelj
et al. (2021) and van der Sluijs et al. (2023) are distinctly higher than «gp g on the QTP.

Area-volume or allometric scaling relationships describe
volumetric enlargement characteristics of RTS and their po-
tential drivers such as that higher o coefficients indicate
larger headwalls and concavity depth per unit area growth
(van der Sluijs et al., 2023). Several studies investigated the
power-law relationship between RTS area and volume us-
ing different methodologies and datasets, complicating di-
rect transferability between results. Similar to our approach,
Bernhard et al. (2022a) and Dai et al. (2025) calculated eleva-
tion change over a time period T1-T2, whereas Kokelj et al.
(2021) and van der Sluijs et al. (2023) derived erosion vol-
umes by subtracting a simulated pre-disturbance DEM (T1)
from the high-resolution DEM of the disturbed state (T2) us-
ing masking and re-interpolation techniques. Ma et al. (2025)
followed a similar approach yet used 30 m-resolution mo-
saic DEMs as the pre-disturbance state (T1). The studies also
used different model fitting approaches: OLS (Kokelj et al.,
2021; van der Sluijs et al., 2023; Dai et al., 2025) and ODR
(Bernhard et al., 2022a). Ma et al. (2025) did not explicitly
report the model choice. We therefore assume that the au-
thors used the more common OLS. Bernhard et al. (2022a)
estimated an overall Arctic aopr =1.154+0.01 (nrts =
1854) while Dai et al. (2025) found with aors = 1.304+0.01
(nrTs = 2747) a noticeably higher coefficient. Kokelj et al.
(2021) and van der Sluijs et al. (2023) estimated «ors-values
of 1.41 (nrrs =71) and 1.36 £20.01 (nrrs = 1522) in the
low Canadian Arctic, respectively (Fig. 6¢c, 34 4). Bern-
hard et al. (2022a) calculated the power-law scaling sepa-
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rately and found aopr = 1.26 £ 0.02 (nrts = 438) for the
Peel Plateau (3) and apopr = 1.16 +0.03 (nrrs = 212) for
the Tuktoyaktuk Coastlands (4). This range of scaling co-
efficients for similar regions as well as our results for QTP
(Fig. 4a and Fig. S1) highlights the challenge in compar-
ing scaling studies based on different methodologies and
datasets. Moreover, minor differences in the scaling coeffi-
cient have strong impacts on the scaling: A difference of, for
example, 0.1 in « leads to a doubling of the volume estima-
tion (van der Sluijs et al., 2023).

On the QTP, more than half of the RTS in the inventory
of Xia et al. (2024) initiated in 2016 (Fig. S2a) while Luo
et al. (2022) found that > 80 % of the RTS in the central QTP
formed during extremely warm summers in 2010 and 2016.
This indicates that our scaling results are based on plani-
metric areas and volumes representing rather the entire RTS
landform and its lifecycle, similar to the methodology used
by Kokelj et al. (2021), van der Sluijs et al. (2023) and Ma
et al. (2025). Compared to Arctic permafrost regions, our re-
sults (aODR = 1.30:]:0.01, QLS = l.20:|:0.01, nRTS = 3043)
are higher than the scaling coefficients reported by Bern-
hard et al. (2022a) yet lower than the estimates of Dai et al.
(2025), van der Sluijs et al. (2023), and Kokelj et al. (2021).
When comparing material erosion and area-volume scaling
in the QTP subregions, we see almost as pronounced dif-
ferences as between the QTP and the Arctic (Fig. 4a). The
central QTP dominates the number of RTS and the associ-
ated total material erosion (Xia et al., 2024). However, the
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northeast QTP has a substantially higher scaling coefficient,
indicating larger headwalls and hence, potentially more ef-
ficient material mobilisation at an individual RTS level. The
mountainous northeastern plateau potentially favours the de-
velopment of relatively larger and deeper RTS (see van der
Sluijs et al., 2023, for coefficient interpretation, Figs. S1f
and S3f). However, the driving factors underlying the ob-
served differences across permafrost (sub-)regions are likely
multifaceted, including variations in RTS longevity and life-
cycle stage, GI content, vegetation and soil properties, and
proximity to water bodies. Detailed investigations into these
factors remain the subject of prospective research. RTS on
the QTP are reported to be generally smaller and more shal-
low than at Arctic hotspots (Liu et al., 2024). It is therefore
possible that the coarse resolution of the TanDEM-X DEM
might not correctly capture the area and volume change for
these small areas, skewing the scaling models. However, us-
ing high-resolution stereo-optical DEMs, Ma et al. (2025)
found a scaling coefficient similar to our «ors of 1.20£0.01
(nrTs = 1429). Area-volume scaling also depends on how
the actively eroding RTS scar zone is delineated. While there
are commonly accepted definitions of RTS geomorphology
(CPA et al., 2024; Harris, 1988), different data sources show
different aspects of RTS activity, and even experts work-
ing on similar data can differ strongly in their delineations
based on their own ontological understandings of what con-
stitutes RTS (Nesterova et al., 2024; Nitze et al., 2024; Maier
et al., 2025). More research is needed in this regard, and our
novel dataset offers a critical resource for future investiga-
tions into the mechanisms driving RTS material erosion on
the QTP. Our results are consistent with other studies show-
ing a notable increase in RTS (mass wasting) activity across
the QTP, particularly over the past decade (Ma et al., 2025;
Xiaetal., 2022; Luo et al., 2022) with RTS sizes being gener-
ally smaller and headwall retreat rates lower than those found
in other Arctic regions (Yi et al., 2025; Luo et al., 2022;
Lewkowicz and Way, 2019; Runge et al., 2022; Nesterova
et al., 2024; Huang et al., 2021). The magnitude of newly
formed RTS potentially offsets the relatively low concavity
depths, so that the total mass-wasting activity and material
erosion volume during the last decade show a magnitude
comparable to the thermokarst landscapes in the high Arc-
tic.

4.2 Magnitude of RTS SOC mobilisation and ground
ice loss

Jiao et al. (2022) investigated one large RTS in the Beiluhe
River Basin between 2021 and 2022 and found 1.9 ma~! ver-
tical deformation at the headwall and a total volume change
of 1.41 x 10 m3a~!. The active layer at the RTS location
was 1.95m with a ground ice layer between 2.2 and 3.5m
depth and an ice content of 68 % to 88 % at depths of 2.2
to 4 m obtained at a borehole near the RTS. Compared to
our results in the central QTP (Fig. 4, Table Sla), the in-
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vestigated RTS has a typical headwall height and material
erosion volume (84 = 1.45m, hmax = 2.35m, 8V = 1.97 x
103 m3a~!). The measured GI content near the RTS is sub-
stantially higher than the average GI content we used in our
estimations (GI = 32.4 %). The GI content is strongly related
to the landscape’s geomorphology. The majority of GI on the
QTP is found on gentle shaded slopes at elevations between
4400 and 5100 m (Fan et al., 2023) typical for central subre-
gions and most RTS locations (Table S1, Fig. S2b—d). How-
ever, some studies also found GI content higher than 80 %
in the northeast QTP (Wang et al., 2018; Fan et al., 2023)
and a mean GI content of ~ 16 % in the Beiluhe River Basin
(Lin et al., 2020). RTS only form in locations where massive
ground ice is present in depths that can be exposed by, for ex-
ample, active layer detachments (Nesterova et al., 2024). We
might underestimate local ground ice conditions since large-
scale datasets that estimate soil properties in permafrost re-
gions are based on limited observations and coarse spatial
resolution that typically do not well represent fine-scale soil
conditions (Hugelius et al., 2014; Mishra et al., 2021; Wang
et al., 2021; Zou et al., 2024). With increased soil depth, es-
timates of soil properties become even more scarce (Chen
et al., 2024b; Ding et al., 2019). Since we observed negative
elevation changes of more than 3 m in RTS on the QTP, we
used a simple exponential model to extrapolate SOC stocks
to deeper soil layers. Probably, this model is too simple and
does not capture the spatial variability of soil conditions in
the complex permafrost landscape (Bernhard et al., 2022b).
However, only 2% of the total estimated mobilised SOC
came from soils below 3 m depth.

The processes and fate of the mobilised SOC remain
highly uncertain as multiple complex ecosystem interactions
and hydrothermal processes are involved (Yi et al., 2025).
Parts of mobilised SOC remain potentially on the slump floor
and are available for microbial decomposition and release as
greenhouse gases (Wang et al., 2024). Other parts, together
with the thawed material, are deposited and stabilised at the
slump floor (Thomas et al., 2023; Liu et al., 2021, 2018; Mu
et al., 2017) or laterally transported downslope into adjacent
river and lake systems undergoing complex water chemistry
processes such as dissolution or sedimentation (Lewkow-
icz and Way, 2019). We only quantified the magnitude of
SOC mobilised by RTS activity and its spatial pattern which
closely follows the spatial trend of existing SOC stocks on
the QTP (Wang et al., 2021). Exploring the complex path-
ways of mobilised SOC is beyond the scope of this study.
However, based on the results of our study, we recommend
further research into the fate of the mobilised SOC. Figure 5b
clearly shows areas of material ablation, but also regions of
material deposition on the slump floor are visible. In future
investigations, insights could potentially be generated into
how much relocated material and SOC are deposited within
an RTS and how much is transported laterally into hydrolog-
ical networks. In addition, the balance between areas of neg-
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ative and positive elevation change might be another avenue
to improve spatially explicit GI information for the QTP.

To our knowledge, no study has quantified the SOC mo-
bilisation based on empirical RTS erosion material volumet-
rics for the entire QTP. Ma et al. (2025) modelled a total
annual SOC loss of 4.12 x 10" kgCa~! (95% CI: 3.06 x
10" kgCa~'-5.12 x 10’ kgCa~') from RTS mass wasting
between 1989 and 2022 based on optical RTS inventories
and allometric scaling relations, which is of a similar mag-
nitude as our results (3.53(1)91%3 x 107 kgCa_l). Bernhard
et al. (2022b), similar to this study, processed multi-temporal
stacks of TanDEM-X-derived DEMs for the time periods
2010-2016 (nrts = 76) and 2017-2020 (nrts = 1404) to in-
vestigate the impact of a summer heat wave on RTS mass
wasting and SOC mobilisation on the Taymyr Peninsula in
Siberia. Individual RTS on the Taymyr Peninsula mobilised
on average a similar amount of material, yet 14 times more
SOC compared to the RTS on the QTP prior to the heatwave.
The heatwave triggered a surge in RTS activity, including a
17-fold increase in new initiations, a 2.3-fold increase in the
average volume change rate, and a 28-fold increase in SOC
mobilisation, resulting in quantities far exceeding those ob-
served on the QTP.

Due to the increase in greening and wetting of the QTP,
recent studies estimate that the QTP is a large carbon sink
of 344 x 108kgCa~! (or 34.4TgCa~") (Chen et al., 2024a;
Wang et al., 2023). However, several studies that conducted
soil sampling within disturbed permafrost areas for several
consecutive years found that up to one-third of the surface
SOC content (< 40cm) has the potential to be lost due to
rapid permafrost thaw (Mu et al., 2017; Liu et al., 2018;
Wu et al., 2018). Furthermore, vegetation restoration ap-
pears to be slow on the QTP, and exposed areas disturbed
by thermokarst can remain bare for decades (Liu et al., 2018;
Mu et al., 2017; Li et al., 2025). Even though our results in-
dicate that RTS-induced SOC mobilisation only accounted
for ~ 0.1 % of the total QTP carbon budget during the last
decade and is proportionately insignificant to many Arctic
regions, the sharply rising number of RTS on the QTP and
the majority of SOC mobilisation in the uppermost, carbon-
rich layers of soil could become more relevant for regional
carbon budgets in a warming future climate.

4.3 Limitations and Potential of a Multimodal Data
Approach for RTS Mass Wasting Monitoring

Compared to the Arctic where the ArcticDEM strip data
(Porter et al., 2018) offers an open source and high-resolution
multitemporal DEM source based on stereo-optical satellite
images (~ 3 m) that is suitable for RT'S monitoring (Dai et al.,
2024, 2025; Nitze et al., 2021; Yang et al., 2023), on the QTP
no similar high-resolution temporally resolved DEM exists
- except for the data from the TanDEM-X mission. Bistatic
TanDEM-X observations uniquely enable DEM generation
on a global scale. Even in regions with adverse geographic
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or climatic conditions for satellite remote sensing, for ex-
ample, a high percentage of cloud cover or long periods of
snow cover, bistatic radar observations can be used to pro-
duce high-quality DEMs with acceptable spatial resolution
for RTS monitoring (Krieger et al., 2007; Bojarski et al.,
2021; Bernhard et al., 2022a; Maier et al., 2025). However,
the temporal resolution of the TanDEM-X observations is
not equal for all regions of the world. We can assume that
RTS activity only occurs in the warm summer months and
a phase of stability occurs between October and April due
to low temperatures (Chen et al., 2015; Che et al., 2008; Ma
et al., 2023). Due to limited data availability on the QTP, we
had to aggregate observations from several years and seasons
to ensure sufficient coverage. For T1, we used observations
between mid-winter 2011 and end of winter 2012 accounting
for exactly one summer of RTS activity, while for T2 we had
to accept a larger time span (end of summer 2017 to mid-
winter 2020) accumulating the RTS activity of two summer
seasons, which potentially increased imprecision in the mass
wasting estimates. Xia et al. (2024) found that the highest
RTS activity occurred before 2020. Between 2020 and 2022,
only 59 new RTS were detected in the PlanetScope images.
This could indicate that we captured most of the RTS activity
that has occurred on the QTP during the last decade. For vol-
ume estimation based on delineations of the RTS inventory,
stable areas containing no elevation change but background
noise are likely included, since most delineations based on
optical images are broader than the actual active erosion area.
Although this minimally affects the total volume change due
to the low magnitude in negative elevation change, it adds
additional random errors, thus contributing to the overall un-
certainty budget.

To monitor the dynamic lifecycles of these complex
thermokarst features and understand their drivers and future
development, yearly records of RTS-induced material ero-
sion volumes are highly desirable (Nesterova et al., 2024;
Kokelj et al., 2021). The general scarcity of suitable DEMs,
as well as the temporal limitations, makes monitoring of RTS
material erosion and impact on carbon cycles solely based on
DEM data challenging. Allometric or area-volume scaling
relations, as presented and discussed in this study, are typ-
ically used to investigate landscape evolution or RTS activity
change over time, but can also be used to enable the inves-
tigation of not only planimetric area expansion from optical
RTS inventories but also transform the area change into vol-
ume change of eroded material and expand the analysis to
yearly or even seasonal temporal scales. We derived a sta-
tistically robust area-volume scaling relation for the entire
QTP region, similar to regions elsewhere (Bernhard et al.,
2022a; van der Sluijs et al., 2023; Dai et al., 2025). However,
a small difference in the scaling coefficient « has a large im-
pact on the resulting volume change §V. We see substantial
differences in the scaling relations between the different QTP
subregions (Figs. S1 and S3). When comparing our scaling
results with the small number of existing studies on allomet-
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ric scaling of RTS in the Arctic, we saw distinct differences
between our results and studies investigating similar regions
in the Arctic (Bernhard et al., 2022a; van der Sluijs et al.,
2023; Kokelj et al., 2021) yet clear similarities to the only
existing study on the QTP (Ma et al., 2025). Applying area-
volume scaling especially to multimodal RTS datasets should
be done carefully to obtain regional estimates on material
erosion volume and mass wasting derivatives such as ground
ice loss or SOC mobilisation. For subregional scale or even
feature level, this approach has its clear limitations due to the
heterogeneity of RTS across at both local and broad scales.
However, large-scale and even pan-Arctic RTS inventories
based on optical satellite images become more available and
may allow for a similar approach of finding scaling relations
for Arctic thermokarst regions if delineations coincide well
ontologically, spatially and temporally with measured ele-
vation change (Yang et al., 2025; Nitze et al., 2025). Here,
we present a scaling relationship for the QTP based on com-
monly applied OLS regression

§VoLs = (0.29 £0.01) - Axj, 11#0-01
with R* =0.77 (p < 0.001) ®

that may readily transform planimetric RTS area derived
from vegetation disturbance on optical remote sensing im-
ages into volume estimates at scale. We showed that RTS
monitoring on elevation change maps based on DEMs with
10 m resolution omits approximately 35 % of the present fea-
tures compared to monitoring RTS with 3 m multispectral
images. However, the difference in estimated material ero-
sion volume from the two datasets is < 1 % since most of the
missed RTS are small and shallow (Fig. 5c). Open-source
and multi-temporal images, such as from ESA’s Sentinel-
2 satellites, with a similar spatial resolution as TanDEM-
X DEMs could have great potential to continuously moni-
tor RTS activity to answer questions about volumetrics, per-
mafrost thaw impacts on hydrological systems, and carbon
cycles based on reliable area-volume scaling laws.

5 Conclusions

RTS landforms are typically complex and highly dynamic,
often remaining active for several years before stabilising
and, in some cases, reinitiating. To adequately capture their
temporal evolution and interactions with changing climate,
high-temporal-resolution remote sensing data are essential.
By combining modelled soil property datasets with multi-
modal remote sensing data, we estimated that RTS activity
relocated 5.026%25 x 107 m3 formerly frozen material, con-
tributed to a loss of 3.58%?2%0 x 10®m? ground ice and mo-
bilised 2.78)7% x 108 kgC SOC on the QTP between 2011
and 2020. Interregional comparisons of RTS dynamics are
challenging due to varying spatial, temporal, and method-
ological factors. However, RTS on the QTP exhibit mass-

The Cryosphere, 19, 4855-4873, 2025

K. Maier et al.: Quantification of mass wasting and carbon mobilisation from retrogressive thaw slumps

wasting dynamics comparable to Arctic RTS hotspots. De-
spite their comparably recent initiation and smaller size, ero-
sion and SOC mobilisation on the QTP in the past decade
surpassed some regions in the Siberian Arctic but remained
up to 10 times lower than well-known thermokarst regions
in the high Canadian Arctic. Although RTS-induced carbon
mobilisation only accounts for approximately 0.1 % of the
QTP’s carbon budget, the acceleration of RTS activity since
the beginning of the last decade can contribute to the antici-
pated region’s shift from a carbon sink to a source. By inte-
grating remote sensing data with varying spatial and tempo-
ral resolutions and different information layers, we demon-
strated that erosion volumes can be accurately estimated,
even when the delineations of the RTS erosion-affected area
vary. We found a reliable power-law scaling based on com-
monly applied OLS regression between the computed mate-
rial erosion volume change and the (ablation) area in the op-
tical RTS inventory (6V =0.05- §A1:20£0.01 Fig. Sla, and
8V =0.29- AXial'“iO‘Ol, Fig. S3a) that enables future re-
search to transform the planimetric area of RTS delineations
into regional estimates of erosion volume and constrain RTS-
induced SOC mobilisation on the QTP. Improved estimates
and allometric relationships will help close the knowledge
gap in understanding the impact of permafrost thaw on the
permafrost carbon cycle for the QTP and globally.
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aries of Xia et al. (2024) including the computed active ero-
sion areas, material erosion volumes, ground ice loss, and SOC
mobilisation can be found under https://doi.org/10.3929/ethz-b-
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mass-wasting calculations based on the optical RTS inventory can
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