Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-2963-2025
https://doi.org/10.5194/tc-19-2963-2025
Research article
 | 
12 Aug 2025
Research article |  | 12 Aug 2025

Bias in modeled Greenland Ice Sheet melt revealed by ASCAT

Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard

Related authors

Learning to melt: Emulating Greenland surface melt from a polar RCM with machine learning
Elke Schlager, Sebastian Scher, Ruth H. Mottram, and Peter L. Langen
EGUsphere, https://doi.org/10.5194/egusphere-2026-7,https://doi.org/10.5194/egusphere-2026-7, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Assessing the effect of land cover on ISBA snow water equivalent simulations over Europe
Oscar Rojas-Munoz, Constantin Ardilouze, Bertrand Bonan, Diane Tzanos, Darren Ghent, Céline Lamarche, Thomas Nagler, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2026-65,https://doi.org/10.5194/egusphere-2026-65, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Improving the representation of coastal polynyas in high resolution climate models with satellite datasets
José Abraham Torres Alavez, Ruth Mottram, Thomas Lavergne, Rasmus Pedersen, and Ole Bøssing Christensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-6183,https://doi.org/10.5194/egusphere-2025-6183, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A State-Space Model for Monitoring Greenland Ice Sheet Surface Elevation Change from CryoSat-2
Natalia H. Andersen, Sebastian B. Simonsen, Karina Nielsen, Mai Winstrup, Baptiste Vandecrux, Hui Gao, Beata Csatho, Anton Schenk, and Louise Sandberg Sørensen
EGUsphere, https://doi.org/10.5194/egusphere-2025-5015,https://doi.org/10.5194/egusphere-2025-5015, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin L. Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
The Cryosphere, 19, 6887–6906, https://doi.org/10.5194/tc-19-6887-2025,https://doi.org/10.5194/tc-19-6887-2025, 2025
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Passive microwave derived snow melt regions on the Greenland Ice Sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995. a
Antwerpen, R. M., Tedesco, M., Fettweis, X., Alexander, P., and van de Berg, W. J.: Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000–2021) and implications for meltwater production estimates, The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, 2022. a
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006. a, b, c
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. a, b, c
Brangers, I., Lievens, H., Miège, C., Demuzere, M., Brucker, L., and De Lannoy, G. J. M.: Sentinel 1 detects firn aquifers in the Greenland Ice Sheet, Geophys. Res. Lett., 47, e2019GL085192, https://doi.org/10.1029/2019GL085192, 2020. a
Download
Short summary
Regional climate models are currently the only source for assessing the melt volume of the Greenland Ice Sheet on a global scale. This study compares the modeled melt volume with observations from weather stations and melt extent observed from the Advanced SCATterometer (ASCAT) to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
Share