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Abstract. The runoff of surface melt is the primary driver of
mass loss over the Greenland Ice Sheet. An accurate repre-
sentation of surface melt is crucial for understanding the sur-
face mass balance and, ultimately, the ice sheet’s total con-
tribution to sea level rise. Regional climate models (RCMs)
model ice-sheet-wide melt volume but exhibit large vari-
ability in estimates among models, requiring validation with
observed melt. Here, we explore a novel data processing
method from the Advanced SCATterometer (ASCAT) instru-
ment on board the EUMETSAT MetOp satellites, which pro-
vides estimates of the spatiotemporal variability of melt ex-
tent over the Greenland Ice Sheet between 2007 and 2020.
We apply ASCAT wet-snow maps to pinpoint differences in
the melt products from three distinct RCMs, where one is
forced at the boundary with two different reanalyses. Using
automatic weather station (AWS) air temperature observa-
tions, we assess how well RCM-modeled melt volume aligns
with in situ temperatures. With this assessment, we establish
a threshold for the RCMs to identify how much meltwater
is in the models before it is observed at the AWSs and ulti-
mately infer the melt extent in the RCMs. We show that ap-
plying thresholds, informed by in situ measurements, reduces
the differences between ASCAT and RCMs and minimizes
the discrepancies between different RCMs. Differences be-
tween modeled melt extent and melt extent observed by AS-
CAT are used to pinpoint (i) biases in the RCMs, which in-
clude variability in their albedo schemes, snowfall, turbulent
heat fluxes, and temperature, as well as differences in radi-
ation schemes, and (ii) limitations of the liquid water detec-
tion by ASCAT, including misclassification in the ablation
zone and a temporal melt onset bias. Overall, we find that the

RCMs tend to have a later melt onset than ASCAT and an ear-
lier end to the melt season, with a similar but slightly smaller
melt area compared to that identified in ASCAT. Biases, how-
ever, vary spatially between models and with compensat-
ing errors in different regions, suggesting that one RCM can
sometimes represent the present-day surface across the entire
ice sheet more effectively than the ensemble mean.

1 Introduction

The Greenland Ice Sheet significantly contributes to the rise
in global sea levels, contributing approximately 15 % since
the early 1990s (WCRP Global Sea Level Budget Group,
2018). Between 1992 and 2020, satellite observations have
shown that the Greenland Ice Sheet has lost 4892± 457 Gt
of ice or 13.6± 1.3 mm sea level equivalent (Otosaka et al.,
2023), with half of the mass loss attributed to a decrease in
the surface mass balance (SMB; van den Broeke et al., 2016).
However, the rate of mass loss has exhibited considerable
annual variability in recent years, ranging from 86± 75 Gt
in 2017 to 444± 93 Gt in 2019, with the latter being driven
by exceptional surface melting during the summer (Tedesco
and Fettweis, 2020). Modeling studies have shown that sur-
face melt on the Greenland Ice Sheet has generally doubled
since the 1990s due to a rise in temperature (Tedesco and Fet-
tweis, 2020; van den Broeke et al., 2016). Meanwhile, snow
accumulation has remained nearly constant (van den Broeke
et al., 2016). In the warm summer months, the surface tem-
perature rises above the melting point of ice, and surface melt
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occurs. Depending on snow and firn characteristics, meltwa-
ter generated at the surface can collect at the surface and form
supraglacial meltwater lakes (Koenig et al., 2015); run off
as surface meltwater (Smith et al., 2015); or percolate into
the snowpack, where it either refreezes (Forster et al., 2014;
Harper et al., 2012) or runs off englacially (Chandler et al.,
2013).

At present, regional climate models (RCMs) provide the
most comprehensive approach for obtaining ice-sheet-wide
estimates of meltwater volumes and runoff, with simula-
tions showing the best agreement with observations (Fet-
tweis et al., 2020). However, these models are influenced
by the chosen modeling approach, and substantial dispari-
ties persist among models (Rae et al., 2012; Vernon et al.,
2013; Fettweis et al., 2020; Glaude et al., 2024). In partic-
ular, recent studies suggest that small differences between
models in the present day, representing differences in pa-
rameterizations, have large effects on projections of melt,
runoff, and surface mass balance when run into the future,
causing greater uncertainty in sea level rise estimates than
is desirable for climate adaptation purposes (Goelzer et al.,
2020). Thus, it is crucial to develop methods to evaluate melt
estimates from RCMs against observations of melt to un-
derstand these discrepancies and ultimately evaluate which
RCMs most realistically model melt (Langen et al., 2017).
While melt intensity can be derived from in situ observa-
tions at automatic weather stations (AWSs), the sparse dis-
tribution of these stations across the ice sheet limits the eval-
uation of melt estimates beyond local scales (Fausto et al.,
2018). On the other hand, satellite remote sensing can ob-
serve the presence of meltwater in the upper part of the firn
pack, while melt intensity has not yet been measured suc-
cessfully using remote sensing. Recent approaches, such as
those by Dethinne et al. (2023) and Picard et al. (2022),
have assimilated remote sensing datasets into more detailed
modeling of surface melt processes to estimate meltwater
volume. Although including more observational data gen-
erally improves the representation of current surface con-
ditions in the RCMs (Langen et al., 2017; Dethinne et al.,
2023), there remains a strong need for independent obser-
vational datasets to assess model outputs. Remote sensing
satellites provide information on Greenland Ice Sheet sur-
face melt through observations from the visible to the mi-
crowave spectrum, where some of the widely used sensors
are the Advanced SCATterometer (ASCAT), Sentinel-1, the
Moderate Resolution Imaging Spectroradiometer (MODIS),
and the Special Sensor Microwave Imager/Sounder (SSMIS)
(Husman et al., 2023). Microwave sensors have the advan-
tage of offering measurements independently of cloud cover,
weather conditions, and polar darkness. Over the ice sheets,
the backscattering of the microwave signals from snow and
ice depends on roughness geometry and electrical properties,
which in turn depend on the physical characteristics of the
snow and ice (Wismann, 2000; Long, 2017). During the win-
ter, the backscatter signal can exhibit a gradual decrease due

to snow accumulation attenuating the volume scattering in
the snowpack. As the temperature increases, meltwater at the
surface is introduced, and the backscatter signal experiences
a substantial drop. This sensitivity to meltwater has enabled
several studies to estimate melt over both ice sheets using
passive and active microwave measurements with a thresh-
old method to detect the onset of melt and its extent (Long
and Drinkwater, 1994; Wismann, 2000; Ashcraft and Long,
2006; Fettweis et al., 2011; Colosio et al., 2021; Husman
et al., 2023). The magnitude of the decrease in backscatter
varies due to factors such as the snow water content and the
specific properties of the snowpack, such as grain size and the
presence of ice layers and lenses, which influence dielectric
properties and roughness geometries (Wismann, 2000; Long,
2017). Refrozen meltwater from the previous melt season can
percolate into the firn, leading to the formation of subsurface
features such as firn aquifers and ice lenses, which can poten-
tially amplify the backscatter signal prior to the current melt-
ing season (Brangers et al., 2020). Further, meltwater in the
subsurface can still be detected after refreezing of the surface
layer as the low-frequency signals can still penetrate into the
refrozen surface layer. Using a threshold method proposed by
Ashcraft and Long (2006), Husman et al. (2023) showed that
C-band (4–8 GHz) active microwave sensors detected more
melt days than K-band (18–27 GHz) passive microwave sen-
sors in areas with meltwater in the subsurface in Antarctica
due to differences in penetration depth. Thus, for the correct
identification of surface melt using microwave satellite ob-
servations, it is important to account for penetration depth,
changes in dielectric properties, and roughness geometries
of the snowpack. The formation of subsurface ice features
and subsurface penetration can lead to significant misclas-
sification of surface melt if a simple threshold method is
used (Ashcraft and Long, 2006; Long, 2017). Instead of us-
ing a simple threshold method, ASCAT wet-snow maps uti-
lize an algorithm that incorporates the temporal behavior of
the backscattered signal. With this method, the ASCAT wet-
snow maps can not only detect the presence of liquid wa-
ter on the surface but also distinguish between melting and
subsequent refreezing of the surface meltwater. This makes
ASCAT wet-snow maps a unique product as they allow for
a fairer comparison between the observed liquid meltwater
extent and the surface melt extent simulated by RCMs. Fur-
thermore, by applying an annual recalibration of the win-
ter signal, the product accounts for the formation of subsur-
face features from the previous melt season (Nagler et al.,
2024). Again, this ensures better classification of melt signal
compared to previous melt extent products from both active
and passive microwave measurements over the Greenland Ice
Sheet, such as those by Abdalati and Steffen (1995), Wis-
mann (2000), Nghiem et al. (2001), Tedesco (2007), Fettweis
et al. (2011), and Colosio et al. (2021).

By using ASCAT wet-snow maps, we aim to establish a
framework for evaluating the performance of RCMs in sim-
ulating the temporal variability of present-day melt extent.
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As RCMs are often calibrated with respect to basin-wide
surface mass balance, incorporating an independent satellite
dataset like ASCAT wet-snow maps enables a more com-
prehensive assessment of model performance. By includ-
ing HIRHAM5, the Regional Atmospheric Climate Model
(RACMO2.3p2), and the Modèle Atmosphérique Régional
(MARv3.12), we assess how well each model captures sur-
face melt patterns, focusing not on internal model parameter-
izations, e.g., albedo and near-surface temperature, but on the
representation of melt extent. Here, we employ a liquid wa-
ter detection algorithm that integrates the temporal behavior
of the backscatter signal by classifying the first- and second-
time derivatives. Rather than solely identifying the period of
meltwater presence, the method distinguishes between sur-
face melting and subsequent refreezing of the surface melt-
water. However, this method does not estimate the meltwater
volume, meaning we can only use the satellite-observed melt
to assess the RCMs’ ability to represent the extent of sur-
face melt realistically. Hence, we compare the melt extent
observed by ASCAT to the melt extent modeled by RCMs.
To ensure that the RCM-modeled melt aligns with the in situ
observations, we compare modeled melt volumes to observed
2 m temperatures at automatic weather stations (AWSs) to es-
tablish the melting threshold (millimeters of water equivalent
per day, mmw.e.d−1) to in turn identify how much meltwa-
ter is in the models before it is observed at the AWSs. Once
the melt extent is inferred from the RCMs, it is possible to
compare it with the melt extent observed by ASCAT to iden-
tify biases within the RCMs and limitations in the ASCAT
melt observations.

2 Data

2.1 PROMICE AWS

The Programme for Monitoring of the Greenland Ice Sheet
and Greenland Climate Network (PROMICE GC-net AWS)
offers hourly and daily meteorological and glaciological in
situ measurements for 54 weather stations on the Green-
land Ice Sheet, tundra, and peripheral glaciers (Fausto et al.,
2021; How et al., 2022). Here, we include 34 stations on the
Greenland Ice Sheet and measurements of air temperature
between 2007 and 2020. PROMICE GC-net only includes
active weather stations, but the historical GC-net data in-
clude several discontinued stations. Here data from the Sum-
mit, GITS, and PertermannELA stations are included, as they
overlap in time with ASCAT data (Steffen et al., 2022; Van-
decrux et al., 2023). See Fig. 1 for the locations of the AWSs.

2.2 Regional climate models

The melt volume from RCMs is derived by closing the sur-
face energy budget. When skin temperature exceeds 0 °C,
additional energy contributes towards melting, resetting the
skin temperature to 0 °C (Langen et al., 2015; Noël et al.,

Figure 1. Locations of AWSs included in the study. Only AWSs on
the ice sheet (ASCAT liquid water detection domain) are included in
this study. Further, the Rignot and Mouginot (2012) drainage basins
that are utilized in the subsequent evaluation of RCM-modeled melt
extent against ASCAT-observed melt extent are also included.

2018). However, different model setups, such as horizon-
tal and vertical resolutions, and choices of parameters, like
surface albedo and subsurface schemes, impact the surface
energy balance simulated within these models and thereby
result in different melt volumes. We compare the melt ex-
tent observed by ASCAT with the modeled melt extent from
three RCMs: HIRHAM5, RACMO2.3p2, and MARv3.12;
see Figs. 2 and 3. A detailed description of model differences
is provided in the following.

HIRHAM5

HIRHAM5 (Lucas Picher et al., 2012) utilizes a rotated po-
lar grid at 0.05°× 0.05° horizontal resolution, which for the
Greenland Ice Sheet corresponds to approximately 5.5 km.
HIRHAM5 was developed from the dynamics of the numer-
ical weather forecast High-Resolution Limited Area Model
(HIRLAM; Undén et al., 2002) combined with the physics
from the ECHAM5 general circulation model (Roeckner
et al., 2003) to ensure accurate simulation of the surface
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Figure 2. Modeled mean annual melt by different RCMs inside the ASCAT data mask (2007–2020).

energy balance. HIRHAM5 is forced on the lateral bound-
ary with 6 h global reanalysis temperature, relative humid-
ity, wind vectors, and pressure fields. Further, daily sea ice
concentration and sea surface temperature fields are also
used to force the model (Langen et al., 2017). Here, we in-
clude HIRHAM5 run with both ERA-Interim for the period
of 1979–2019 (Dee et al., 2011) and ERA5 for the period
of 1960–2020 (Hersbach et al., 2020). HIRHAM5 forced
with ERA-Interim is referred to as HIRHAM5-ERAI, and
HIRHAM5 forced with ERA5 is referred to as HIRHAM5-
ERA5. Further, the surface albedo in HIRHAM5-ERAI is de-
rived from MODIS gridded surface albedo (Box et al., 2012),
described in Langen et al. (2017), while the surface albedo in
HIRHAM5-ERA5 is computed internally as a linear func-
tion of temperature, described in Langen et al. (2015). The
outputs from both HIRHAM5 runs are used to force the of-
fline subsurface model described in Langen et al. (2017). The
offline subsurface model includes a multilayer surface snow
and mass balance scheme that simulates melt percolation,
retention, and refreezing with a vertical resolution down to
60 mw.e. (Langen et al., 2017).

RACMO2.3p2

The polar Regional Atmospheric Climate Model
(RACMO2.3p2) is run on an approximately 5.5 km
(0.05°× 0.05°) horizontal resolution (Noël et al.,
2018, 2019). RACMO2.3p2 also integrates the numeri-
cal weather forecasting dynamics from HIRLAM (Undén
et al., 2002) with the physics from the European Centre
for Medium-Range Weather Forecasts–Integrated Forecast
System cycle CY33r1 (ECMWF, 2009) to accurately sim-
ulate the surface energy balance. On the lateral boundary,
RACMO2.3p2 uses the same 6 h and daily ERA5 fields
as HIRHAM5-ERA5 (Hersbach et al., 2020). The snow

albedo is derived from the snow grain size, cloud optical
thickness, solar zenith angle, and impurity concentration
in snow. However, to account for temporal variability in
the ablation zone, gridded MODIS observations of bare ice
(Box et al., 2012) are included in these areas (Van Angelen
et al., 2012). The model includes a multilayer snow module
for simulating surface melt partitioning into percolation,
retention, refreezing, and – ultimately – runoff (Ettema et al.,
2010). The 5.5 km product is statistically downscaled to a
horizontal resolution of 1 km to represent the steep SMB
gradients found over narrow glaciers and confined ablation
zones at the rugged margins of the ice sheet (Noël et al.,
2016).

MARv3.12

The Modèle Atmosphérique Régional, MARv3.12, is run
at a 10 km horizontal grid resolution (Fettweis et al.,
2013, 2017; Tedesco and Fettweis, 2020). MARv3.12
combines atmospheric modeling with a soil–ice–snow–
vegetation–atmosphere transfer scheme (SISVATS) (Gallée
and Schayes, 1994) to simulate the surface energy balance
and mass balance processes over the ice sheet. MARv3.12 is
forced at the lateral boundaries with ERA5 (Hersbach et al.,
2020) at a 6 h temporal resolution. Output values are aver-
aged to obtain daily values (Tedesco and Fettweis, 2020).
MARv3.12 includes the snow model Crocus (Brun et al.,
1992), which simulates a number of layers of snow, ice, and
firn of variable thickness and energy and mass transport be-
tween each layer. The snow model also provides snow grain
properties, which are used in combination with density, age,
and type to simulate snow albedo (Brun et al., 1992; Fet-
tweis et al., 2017; Antwerpen et al., 2022), MARv3.12 also
has an albedo range for bare ice between 0.4 and 0.55, de-
pending on the cleanliness of the ice (Fettweis et al., 2017).
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Figure 3. RCM-simulated variables from 2007–2020 for HIRHAM-ERA5, HIRHAM-ERAI, MARv3.12, and RACMO2.3p2. (a–d) Mean
JJA temperatures in °C, (e–f) the JJA surface albedo, (i–l) the JJA downward shortwave radiation (SWD) in Wm−2, and (m–p) the mean
annual snowfall in mmw.e.yr−1.
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While both RACMO2.3p2 and HIRHAM5-ERA5 incorpo-
rate MODIS observations into the albedo computation, the
surface albedo in MARv3.12 is only based on the internally
computed broadband albedo (Brun et al., 1992).

2.3 ASCAT wet-snow maps

The ASCAT instrument on board the EUMETSAT MetOp
polar-orbiting satellites has provided measurements since
2007. ASCAT is a real aperture radar (RAR) instrument
and measures radar backscatter in vertical polarization at a
range of incidence angles from 25 to 65° at a frequency of
5.255 GHz (C band) (Figa-Saldaña et al., 2002; Long, 2017).
With a spatial resolution of 25 km, ASCAT has limited land
applications, but with the introduction of the scatterometer
image reconstruction (SIR) algorithm, the utility of ASCAT
data has improved significantly (Lindsley and Long, 2010).
The SIR algorithm takes advantage of image reconstruction
techniques and the spatial overlap of measurements over a
region to enhance the effective spatial resolution over a time
interval. SIR depends on the number of measurements, where
increasing the number of measurements leads to a reduc-
tion in noise and an improvement in the spatial resolution.
However, the radar characteristics must remain constant be-
tween passes during the interval time. We refer to Long et al.
(1993) and Long and Drinkwater (1994) for a more detailed
description of the SIR algorithm. For Greenland, a 4 d time
interval is appropriate as it ensures sufficiently dense sam-
pling while justifying the assumption of constant radar char-
acteristics (Lindsley and Long, 2010). With the 4 d time in-
terval, diurnal variations in backscatter signal over ice, such
as melt during the day and refreezing during the night, are
averaged out, which introduces additional uncertainty. Ad-
ditionally, the resolution-enhanced ASCAT product may not
capture short melt events in the spring and intense precip-
itation events, as these signals are averaged. Furthermore,
potential azimuth angle dependencies are not considered in
the construction of the SIR products (Long and Drinkwater,
1994; Lindsley and Long, 2010).

The ASCAT SIR product is available from 2007 to 2020
and is used to identify four different melt stages by applying
a hierarchical decision tree using dynamic thresholds based
on the previous winter reference month (JFM) and the first-
and second-time derivatives of the backscattered signal, σ 0

(Nagler et al., 2024). During the winter months, the backscat-
ter signal is relatively stable, and only minor variations may
occur due to changes in snowpack properties (labeled Stage
1 (ST-1), no melt). To account for the possibility of rem-
nant changes in the snowpack from the previous melt sea-
son, the winter signal is recalibrated annually pixel by pixel.
As the snow surface starts to melt in spring, rising above a
liquid water content of ∼ 1% volume (Mätzler, 1987), the
backscatter signal decreases significantly. This rapid drop in
the backscatter coefficient is utilized to identify the onset and
occurrence of surface melt (labeled ST-2A, surface melt).

During intense melt events, the backscatter signal becomes
fully saturated, which means that an increase in the melt in-
tensity does not lead to further lowering of the backscatter
signal (labeled ST-2B, wet-snow layer). As the meltwater
starts to refreeze, the backscatter signal gradually increases
again, returning to stable winter conditions once the meltwa-
ter down to the radar penetration depth is refrozen (labeled
ST-3, an increase in the refrozen layer). For a more detailed
description of the melt stage classification, we refer to Na-
gler et al. (2024). When comparing ASCAT wet-snow maps
and the melt extent modeled by the RCMs, we excluded ST-3
(an increase in the refrozen layer) in order to make the fairest
comparison with RCM surface melt. Throughout this paper,
we use the phrase melt days when referring to days labeled
ST-2A (surface melt) and ST-2B (wet-snow layer) in the AS-
CAT wet-snow maps. Similarly, melt extent refers to pix-
els labeled ST-2A and ST-2B. It should be noted that active
surface melting may not necessarily occur on the ASCAT-
derived melt days, but meltwater may simply be present with-
out active melting. However, we mitigate the potential differ-
ences by excluding days classified as refreezing and recali-
brating the winter baseline to account for liquid water that
persisted through the winter.

As an example, Fig. 4a shows the backscatter measure-
ments, and the liquid water classification is shown for
the KAN_U AWS. The winter dry signal changes after at
least one melt season, highlighting the melt classification
method’s ability to correctly detect liquid water despite a dif-
ference in the winter signal before and after the melt season.
When comparing the liquid water extent observed by ASCAT
and the melt extent modeled by the RCMs, we excluded ST-
3 (an increase in the refrozen layer) since we are only inter-
ested in comparing surface melt. Figure 4b illustrates a snap-
shot of the detection and classification from 7 August 2017.
Refreezing or no melting is observed in pixels close to the ice
sheet margin when melt occurs at higher elevations on the ice
sheet. Further, when looking at the mean annual number of
melt days, the lower ablation zone exhibits fewer melt days
than at higher elevations. This seemingly incorrect classifica-
tion of liquid water near the ice margin is an effect of changes
in the surface roughness associated with melt. Changes in
surface roughness can counteract the decrease in backscatter
associated with melt, effectively concealing liquid water in
the backscatter signal. Therefore, when comparing ASCAT
and RCMs, we mask out these areas by applying the max-
imum elevation of the snow line between 2007–2020 (Box
et al., 2012), where pixels with an elevation below this snow
line are excluded in the comparison (Fig. 4d).

3 Methods

Modeled surface melt in the RCMs is subject to large vari-
ability among models, as seen in Fig. 2 and discussed in,
e.g., Fettweis et al. (2020). The Greenland Ice Sheet SMB
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Figure 4. (a) The 2016–2018 melt detection and the backscatter signal at KAN_U. (b–c) Two examples of the spatial distribution of liquid
water detection on 8 June 2016 and 7 August 2017. (d) Mean annual number of days with detected liquid water but without refreezing. In
(d) we apply the maximum elevation of the snow line between 2007–2020 (black line) to mask out areas where ASCAT persistently cannot
correctly detect the presence of liquid water.

model intercomparison project (GrSMBMIP) suggested that
discrepancies between RCMs are not systematic (Fettweis
et al., 2020); thus there is a need for individual evaluation
of each modeled melt volume product before we can com-
pare the extent observed by ASCAT. We refer to Fig. 5 for an
overview of the evaluation taken prior to comparing RCMs
with ASCAT. To establish a threshold (in mmw.e.d−1) to in-
fer the melt extent from the simulated RCM melt volume, we
compare it to the PROMICE GC-net AWS. With this compar-
ison we identify how much meltwater must be in the mod-
els before we can also observe it at the AWSs. We compare
each AWS to the RCM grid cell, which has the closest cen-
ter point to the AWS location; see Fig. 1 for AWS locations.
It is important to note that the AWS measurements are sig-
nificantly affected by local-scale weather conditions, so this
approach only ensures that the melt modeled by the RCMs
aligns primarily at these specific locations. Therefore, we in-
clude the maximum number of AWSs to align with, rather
than being limited to those above the maximum snow line
extent, which is where ASCAT and the inferred RCM melt
extents are compared. Since melt is not directly measured at

the AWSs, we use 2 m air temperature as a proxy for melt
conditions, as near-surface air temperature is closely linked
to melt processes. This approach allows us to identify and
quantify temperature biases in each of the RCMs and assess
how well the models simulate melt compared to in situ ob-
servations.

Air temperature is strongly correlated with melt since melt
is a response to a positive surface energy balance, which oc-
curs when the surface temperature reaches 0 °C (Cuffey and
Paterson, 2010). However, it is important to note that air tem-
perature and surface temperature are not the same; while air
temperature influences surface conditions, surface tempera-
ture depends on a combination of energy exchanges at the
surface. Additionally, the local properties of the snowpack
can also affect when melt occurs, and melt can occur in the
snowpack when air temperatures are below 0 °C. Thus, it is
crucial to consider that the heat content of the overlying at-
mosphere is not the sole driver of melt when we compare the
modeled melt volume against the days with observed melt, as
indicated by AWS temperature measurements. With this ap-
proach, we apply a threshold to identify days with significant
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Figure 5. Diagram describing the evaluation process of RCM melt volume and processing of ASCAT wet-snow maps prior to the comparison
between ASCAT liquid water extent and RCM-inferred melt extent.

Table 1. Melting thresholds for the different RCMs based on in situ PROMICE AWS observations of air temperature. The table also gives
examples of the mean July to August air temperatures at six selected AWSs and the mean across all stations. The corresponding mean July
to August air temperatures are showcased for each RCM. The locations of all stations included in the study are shown in Fig. 1.

Mean air temperature [°C]

Thresholds [mmw.e.d−1] CP1 DY2 KAN_U KPC_U NUK_U SDL All AWSs

HIRHAM5-ERA5 4.1 −6.36 −6.78 −5.08 −1.13 0.74 −9.62 −4.02
HIRHAM5-ERAI 0.4 −3.92 −4.04 −2.53 0.29 1.12 −6.50 −2.35
RACMO2.3p2 0.7 −4.66 −4.83 −2.95 −0.80 2.03 −7.14 −1.87
MARv3.12 1.0 −5.16 −5.14 −3.31 −0.93 1.24 −7.71 −2.64

PROMICE GC-net – −4.96 −4.70 −3.31 −0.85 −0.84 −6.80 −3.39

melt in the RCMs, but we also implement a threshold for the
temperature observations to identify when melt occurs in the
snowpack at the AWSs. We explore various thresholds for
temperature observations to account for other factors in the
snowpack that influence when surface melt occurs.

A logical measure to identify how well the models align
with the in situ observations is to maximize the number of
days on which both the models and the in situ observations
agree on either melting or no melting. However, since the
number of days with melt is fewer than the number without
melt, the dataset exhibits an imbalance. In the ablation zone,
the imbalance is less pronounced, with prolonged periods of
melt in the summer, whereas in the accumulation zone, melt
occurs for shorter periods. This data imbalance means that
many days with agreement between RCMs and AWSs can

be attributed to seasonal patterns, concealing disagreement
in the melt season. Instead, we utilize the receiver operat-
ing characteristic (ROC) curve (Peterson et al., 1954) and
the precision-recall (PR) curve (Davis and Goadrich, 2006)
to provide a more nuanced understanding of the alignment
between RCMs and AWSs. Given that TP is the number of
true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false neg-
atives, the ROC curve is a measure of the ability to distin-
guish between two classes across all thresholds and consists
of a graph that shows the true positive rate

(
TPR= TP

TP+FN

)
vs. the false positive rate

(
FPR= 1− TN

TN+FP

)
. Here, we de-

fine the AWSs as true. Thus, we define a TP as a case where
the RCM and AWSs agree that melt is present and a TN as
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Figure 6. ROC and PR curves for possible RCM melting thresholds using varying AWS temperature thresholds. The black dot indicates the
optimal melting threshold for each RCM given in Table 1.

a case where both the AWSs and the RCM observe no melt.
When melt is observed at the AWSs but not by the RCM, it
is defined as an FN and vice versa for FP. The ROC curve
provides the total performance measure across all potential
classification thresholds where a random model will produce
a diagonal line; see Fig. 5 as an example. In contrast, a per-
fect model will have a ROC curve that is composed of the
left and upper boundary lines. The goal is to choose a melt-
ing threshold that maximizes the TPR while minimizing the
FPR. However, in an imbalanced dataset, it is possible to pro-
duce a good ROC curve by making a large number of FP pre-
dictions, especially when the positive class is rare. Thus, for
an imbalanced dataset, it is important to also consider the PR
curve, which is the fraction of TP among the positive pre-
dictions

(
Precision= TP

TP+FP

)
vs. the TP among the actual

positives
(

Recall= TP
TP+FN

)
. When evaluating what melting

threshold to apply to each RCM, we seek the RCM melting
thresholds and AWS temperature thresholds that maximize
the TPR while minimizing the FPR and maximizing preci-
sion and recall.

Figure 6 shows the ROC curves and PR curves for pos-
sible RCM melting thresholds using different AWS temper-
ature thresholds. The black dot indicates the optimal melt-

ing threshold for each RCM (Table 1). For HIRHAM5-
ERA5 and HIRHAM5-ERAI, we see that both the best ROC
curve and the best PR curve match, although they sug-
gest very different melting thresholds. For MARv3.12 and
RACMO2.3p2, the ROC curve suggests using temperature
thresholds between−0.5 and 1 °C to find the best RCM melt-
ing threshold. However, the PR curve suggests a lower tem-
perature threshold between −1.0 and −2.0 °C, which yields
better results. Table 1 showcases the applied thresholds in-
formed by PROMICE temperature observations.

To ensure consistency across datasets, all RCMs are re-
gridded to a common grid – in this case, the ASCAT grid
of 5.5 km resolution. For HIRHAM5 and RACMO2.3p2, we
upscale data and apply the nearest neighbor interpolation
method. For MARv3.12, we downscale data and use a cu-
bic interpolation method. It is important to note that regrid-
ding can potentially introduce a bias into the RCM output,
meaning systematic errors not associated with internal pa-
rameterization choices within the RCMs. The potential im-
plication of the regridding biases is considered when choos-
ing a baseline threshold. Here, the aim is to apply a baseline
threshold to all RCMs independent of warm/cold bias within
the RCMs. Therefore, the baseline threshold was set to the
smallest value possible (0.1 mmw.e.d−1) without allowing
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regridding biases to impact the number of melt days. When
comparing the RCM melt days and ASCAT melt days, we
apply a snow line mask to the RCMs similar to that used for
ASCAT.

4 Results

Table 1 showcases the mean air temperature for July and Au-
gust observed by the AWSs and modeled by the RCMs at the
AWSs, suggesting a cold bias in HIRHAM5-ERA5, whereas
MARv3.12 and HIRHAM5-ERAI have a warm bias. How-
ever, the mean air temperature at selected stations highlights
that the temperature bias is not systematic across the ice
sheet. To evaluate the difference between the mean annual
number of melt days in ASCAT and each RCM, we compute
the RMSE for the whole ice sheet and each drainage basin
(Rignot and Mouginot, 2012). Besides applying the in-situ-
informed thresholds found in Table 1, we also apply the base-
line threshold of 0.1 mmw.e.d−1. Table 2 shows the mean
annual number of melt days and the mean duration of the
melt season for both the RCMs with the two thresholds ap-
plied and ASCAT. We define the start of the melt season as
the point when at least one grid point experiences melting.
The melt extent using the in-situ-informed thresholds tends
to align better with the ASCAT-observed mean number of
melt days and the duration of the melt season. Furthermore,
when the baseline threshold of 0.1 mmw.e.d−1 is applied,
melting occurs in parts of the SW basin all year. We apply
a Mann–Whitney U test (Mann and Whitney, 1947) to test
whether using an in-situ-informed threshold has no effect.
The p value in Table 2 suggests that it is very unlikely that
there is no effect from using an in-situ-informed threshold.

The RMSEs between ASCAT and RCMs are showcased
in Table 3, where we see that applying the in-situ-informed
threshold improves the discrepancies between modeled melt
and ASCAT, except for HIRHAM5-ERAI. RACMO2.3p2
and MARv3.12 show the biggest improvement, although
the improvement is not evenly distributed between drainage
basins. Since the in-situ-informed thresholds generally re-
duce the differences between RCMs and ASCAT compared
to the baseline threshold of 0.1 mmw.e.d−1 (Table 3), we
apply only the in-situ-informed thresholds in the following.
A detailed comparison of the number of melt days using the
baseline threshold is provided in Appendix A, showing larger
discrepancies between ASCAT and RCMs, corresponding
with the findings in Table 3.

Figure 7 shows the spatial variability of the number of melt
days both within each RCM (upper panel) and in compari-
son with ASCAT (lower panel). Looking at the spatial vari-
ability in the annual number of melt days for the RCMs and
ASCAT (Fig. 4d), areas with > 100 d of melt lie near the
lower ablation zone, but the extent of areas with > 100 d of
melt varies between ASCAT and among the models. Most
notable is HIRHAM5-ERA5, which has substantially larger

areas with> 120 d of melt. Areas with< 1 d of melt on aver-
age are shown in white in Fig. 7, illustrating areas where melt
very rarely occurs. Again, there is large variability among the
models in terms of modeling areas with almost no melt days.

While Table 3 illustrates the variability in error between
ASCAT and RCMs across drainage basins, the lower panels
in Fig. 7 reveal that the largest differences are concentrated
near the ice margin across all basins. Generally, the SW and
SE basins have the highest RMSEs, explained by relatively
large areas with 20 or more days of difference in these basins
(Fig. 7). Similarly, HIRHAM5-ERA5 exhibits a high RMSE
in the western basins, corresponding to large areas where
HIRHAM-ERA5 models 20 or more melt days compared
to what ASCAT observes. Although the in-situ-informed
threshold reduces the differences, HIRHAM5-ERA5 contin-
ues to produce more melt days than ASCAT or any other
model, even when the melting threshold is vastly greater
than that of the other RCMs. On the other hand, HIRHAM5-
ERAI consistently underestimates the number of melt days
across all drainage basins. MARv3.12 and RACMO2p2.3
show similar patterns of variability, where the only large dif-
ferences to ASCAT occur close to the maximum snow line
elevation.

Results from all RCMs and ASCAT (Fig. 8a) indicate that,
on average, the melting season starts at the beginning of May
and culminates around July when the greatest melt extent oc-
curs. While RCMs suggest that the melt season, on average,
ends around mid-September, small melt areas are still ob-
served in ASCAT well into October. The maximum melt ex-
tent is, on average, approximately 30 % of the ice sheet, ex-
cept for HIRHAM5-ERA5 with > 35 %. At the beginning of
the melt season, ASCAT detects the increase in melt extent
10–15 d earlier compared to when the RCMs simulate an in-
crease in the melt extent. However, the decrease in ASCAT
melt extent at the end of the melt season corresponds well
to the modeled melt extent. In August and at the beginning
of September, the melt extent decreases but with small pe-
riodical increases, which ASCAT also detects prematurely,
although not as prominently as at the beginning of the melt
season.

On 12 July 2012, an extreme melting event was observed
across almost the entire ice sheet (Nghiem et al., 2012). We
can use this year to showcase how well an extreme but rel-
atively short melt event is captured in the RCMs and by
ASCAT. Results show that when using the in-situ-informed
thresholds, only RACMO2p2.3 simulates melting of > 90 %
of the ice sheet, while the rest only predict approximately
80 % (Fig. 8b). Figure 8b also shows that liquid water is de-
tected earlier by ASCAT at the start of the season. During the
increase in melt extent from July to mid-August, ASCAT was
able to capture an increase in melt extent, but the magnitude
of the increase was smaller compared to that of the models.
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Table 2. Mean annual melt days and mean duration of the melt season for each model using two different thresholds and for ASCAT. The
melt season duration is defined as starting when at least one grid point experiences melting. A Mann–Whitney U test (Mann and Whitney,
1947) was applied to assess whether using an in-situ-informed threshold has no effect. Additionally, the rank-biserial correlation (r value,
Cureton, 1956) was computed to indicate the magnitude of the difference between thresholds.

Mean melt days Duration of melt season

Threshold method Baseline In situ Baseline In situ p value r value

HIRHAM5-ERA5 25 21 225 204 > 0.001 0.48
HIRHAM5-ERAI 16 16 205 201 > 0.001 0.49
RACMO2.3p2 24 18 365 344 > 0.001 0.47
MARv3.12 25 18 274 166 > 0.001 0.45

ASCAT 18 154 – –

Table 3. RMSE of the mean annual number of melt days modeled by RCMs using a baseline threshold and in-situ-informed thresholds and
ASCAT across the whole ice sheet and for each Rignot and Mouginot (2012) drainage basin. RMSE is only computed inside the snow line
data mask to mask out areas where ASCAT cannot correctly detect wet snow; see Fig. 1.

HIRHAM5-ERA5 HIRHAM5-ERAI RACMO2.3p2 MARv3.12

Threshold 0.1 4.1 0.1 0.4 0.1 0.7 0.1 1.0

Full ice sheet 10.70 7.67 7.39 7.76 28.77 6.27 17.78 4.93
NW 8.23 5.13 3.17 3.44 1.97 1.77 3.12 2.00
CW 9.01 5.80 3.30 3.74 2.10 2.10 3.11 2.65
SW 6.88 5.40 6.10 6.69 12.14 4.87 9.68 3.73
SE 5.65 4.89 5.91 6.07 31.56 5.78 18.75 4.08
NE 4.53 3.17 3.13 3.08 2.94 2.15 3.21 1.93
NO 5.11 3.35 2.49 2.68 1.56 1.38 1.66 1.76

5 Discussion

The goal of this study is to use ASCAT to understand how
RCMs model ice-sheet-wide melt extent compared to ob-
servations and to further pinpoint biases within models that
lead to the observed discrepancies. By comparing RCMs
with PROMICE GC-net temperature observations, we are
able to determine how well the RCMs align with in situ
observations. While the uneven distribution of AWSs, con-
centrated in the ablation zone, may result in certain ar-
eas being better represented in the assessment than regions
with fewer AWSs, Table 3 shows that by ensuring that the
RCMs align with in situ measurements at specific loca-
tions, the modeled melt extent and satellite-observed melt
extent show better agreement. Further, with this approach,
we identify that HIRHAM5-ERA5 shows large deviations
from PROMICE GC-net air temperature observations. The
melt threshold in HIRHAM5-ERA5 is considerably higher
than the remaining melt estimates, indicating that HIRHAM-
ERA5 overestimates melt. The identified melting threshold
of 4.1 mmw.e.d−1 suggests potential issues with the rep-
resentation of melt in HIRHAM5 when forced with ERA5.
Consequently, this highlights the importance of carefully
considering model performance. When we compare the num-
ber of melt days in the RCMs with that observed by AS-

CAT, MARv3.12 has the lowest RMSE for the whole ice
sheet. However, MARv3.12 performs predominantly better
on the eastern side of the ice sheet, whereas RACMO2p2.3
performs better on the west coast and in the northernmost
areas. While none of the RCMs exhibit perfect agreement
with either PROMICE GC-net or ASCAT observations when
looking at the RMSEs and the spatial differences between
the annual number of melt days, neither MARv3.12 nor
RACMO2p2.3 has an advantage over the other. On the other
hand, HIRHAM5-ERA5 and HIRHAM5-ERAI display con-
siderable discrepancies in terms of the number of melt days
when compared to ASCAT, each displaying unique patterns
of deviation. Our analysis shows the value of using com-
mon, independent spatially and temporally varying datasets
to evaluate and improve models, and we suggest that this AS-
CAT dataset is a useful addition to better understand biases
in models, especially as it is independent of other datasets,
such as MODIS, which has been used to develop models.

5.1 Biases in RCMs

To obtain the most valid comparison between each RCM
and ASCAT, we utilize in situ observations to assess bi-
ases and to determine an appropriate threshold for the melt
extent in RCMs. By fitting each RCM to in situ observa-
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Figure 7. (a–d) The mean annual number of melt days modeled by the RCMs using an in-situ-informed melt threshold to defined days with
significant melt. Pixels with< 1 d of melt on average are marked as white, showcasing areas where melt rarely occurs. (e–h) The mean annual
difference between the number of melt days in ASCAT and RCMs areas above the 2007–2020 maximum snow line elevation (Fig. 4d). Red
areas correspond to more melt days in ASCAT on average and blue areas correspond to more melt days in the RCM on average. Melt in
ASCAT is defined as Label ST-2A and ST-2B.

tions, we minimize the differences that are introduced due
to model setups, such as resolution and parameterization.
Thus, we reduce overall inter-model discrepancies and differ-
ences in melt extent compared to those observed by ASCAT.
Despite applying the in-situ-informed thresholds, persistent
patterns between RCMs and ASCAT remain. HIRHAM5-
ERA5 is the only model that, on average, predicts more melt
days than ASCAT while also having a substantially higher
melting threshold compared to the other RCM melt outputs;
see Tables 1 and 2. Using the in-situ-informed thresholds,
RACMO2.3p2 and MARv3.12 model the same mean num-
ber of melt days as ASCAT, while HIRHAM5-ERAI mod-

els slightly fewer melt days. Looking at Fig. 7, HIRHAM5-
ERAI, RACMO2.3p2, and MARv3.12 all model fewer melt
days than ASCAT on average in the lower accumulation
zone, indicating either a limitation in the observation of
melt by ASCAT or an underrepresentation of melt by the
RCMs in this area. However, the magnitude of disagree-
ment between the RCMs and ASCAT varies from RCM to
RCM and region to region (Table 3), again suggesting that
the melt and melt extent in these areas are not well rep-
resented by the RCMs or that the melt threshold should
be considered non-stationary according to local conditions.
While HIRHAM-ERA5 exhibits the largest meltwater pro-
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Figure 8. (a) Mean seasonal melt extent (%) modeled by RCMs using in-situ-informed thresholds and retrieved from ASCAT (2007–2020).
In-situ-informed thresholds are given in Table 3. (b) Daily melt extent (%) modeled by RCMs using in-situ-informed thresholds and retrieved
from ASCAT in 2012. In-situ-informed thresholds are given in Table 3. The melt extent in both (a) and (b) is constrained to areas above the
maximum elevation of the snow line.

duction (Fig. 2), HIRHAM-ERA5 is also characterized by
the lowest mean JJA air temperatures (Fig. 3a–d). In gen-
eral, HIRHAM-ERA5, MARv3.12, and RACMO2.3p2, all
forced with ERA5, tend to report lower air temperatures
compared to HIRHAM5-ERAI. This trend likely originates
from ERA5 exhibiting lower air temperatures than its prede-
cessor, ERAI, as highlighted by Krebs-Kanzow et al. (2023).
While some variability among the models forced with ERA5
exists, the models commonly exhibit a higher mean JJA
downward shortwave radiation at the surface (SWD) com-
pared to HIRHAM-ERAI. Krebs-Kanzow et al. (2023) sim-
ilarly reported an overestimation of SWD in ERA5 com-
pared to ERAI. Since the differences in air temperature and
SWD between ERA5 and ERAI have implications for melt-
water production and ultimately runoff, Krebs-Kanzow et al.
(2023) concluded that replacing ERAI with ERA5 forcing
in an energy balance model of the Greenland Ice Sheet re-
quires some recalibration to reproduce existing observations.
In this study, we show the implications for meltwater pro-
duction and extent when forcing the HIRHAM5 SMB model
with ERA5 instead of ERAI without recalibration, though the
inclusion of a different albedo scheme is likely to be more
important.

In addition to the distinct forcing fields in the two
HIRHAM5 outputs, the approach for determining sur-
face albedo differs. The simple surface albedo scheme in
HIRHAM-ERA5 results in a lower mean JJA surface albedo
in the ablation zone and lower accumulation zone com-
pared to that in HIRHAM-ERAI, which included MODIS
observations in the surface albedo scheme (Fig. 3e and f).
RACMO2.3p2 is characterized by the lowest surface albedo
across the entire ice sheet, while MARv3.12 and HIRHAM5-
ERAI are dominated by lower surface albedo particularly in
the accumulation zone. Surprisingly, while RACMO2.3p2
and HIRHAM5-ERAI both report incorporating MODIS

bare ice albedo observations into their surface albedo com-
putation in the ablation zone, the resulting surface albedo
differs greatly between the models. In the RCMs, the surface
albedo is a crucial parameter for simulating the surface en-
ergy balance, contributing to a higher surface energy balance
when the surface albedo is low. A low albedo in the ablation
zone and lower accumulation zone will increase the meltwa-
ter production in these areas. Due to the high variability of
air temperature, SWD, and surface albedo among the mod-
els, the albedo parameterization and radiation and tempera-
ture schemes within the models should be critically assessed
using high-quality measurements to reduce the observed dis-
crepancies in the models’ estimates of meltwater production
(Fig. 2). By aligning simulated melt rates more closely with
observational data, we can improve the model estimates of
meltwater production and, ultimately, runoff.

5.2 Limitations of ASCAT melt observations

We use the maximum extent of the snow line to mask out the
ablation zone when comparing the RCMs to ASCAT due to
nonphysical observations of refreezing by ASCAT in these
areas (Fig. 7). This is not only due to biases in the melt clas-
sification algorithm but also because of the microwave data
themselves. Although melt causes a drop in the backscatter
signal, processes other than the refreezing of liquid water can
counteract the decrease in the backscatter signal. Once the
surface starts to melt, the surface roughness changes, which
can cause an increase in the backscatter signal, potentially
concealing the liquid water and melting in the backscatter
signal. Since the effect of changing surface roughness on
the backscatter signal is not fully understood, it is difficult
to remove this bias in wet-snow detection other than by re-
moving areas where changes in surface roughness are very
pronounced. We further see this systematic misclassification
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of refreeze or no melting in ASCAT when investigating the
2012 melt season. Here, ASCAT detects a lower melt extent
in the late melt season compared to the simulated RCM melt
extent. Since the refreezing periods identified from ASCAT
data are not included in the melt season analysis, misclassifi-
cations that stem from melting being misclassified as refreez-
ing due to changes in surface roughness are not included, po-
tentially contributing to a smaller melt extent at the end of
the melt season.

As seen in both the 2012 melt season (Fig. 8b) and the an-
nual mean cycle of melt extent (Fig. 8a), ASCAT detects the
increase in melt extent before the RCMs, which is partly ex-
plained by the preprocessing averaging done to enhance the
spatial resolution. However, based on Fig. 7, we show an av-
erage offset of 10–15 d between the increase in ASCAT melt
extent and RCM melt extent, which the preprocessing aver-
aging cannot fully explain. Although it is most pronounced
at the beginning of the season, we see that a similar offset
also occurs when there is an increase in the melt extent in the
late season. On average, the magnitude of the seasonal cycle
of melt extent agrees well with that of the RCMs, suggesting
that liquid water is observed earlier but to a similar extent.

Finally, the ASCAT backscatter varies due to additional
factors such as specific properties of the snow, e.g., grain
size and the presence of ice, due to its influence on dielec-
tric properties and roughness geometries. Here, there are two
possible approaches for improving ASCAT melt retrievals:
we could use the surface properties from either the individual
RCMs or in situ observations. However, there is a seasonal
bias in the in situ observations and a lack of spatial coverage,
making them difficult to use for ice-sheet-wide Earth obser-
vation data production. As for the RCM implementation, this
would hamper the use of ASCAT data as an independent data
record.

6 Conclusions

ASCAT wet-snow maps provide a valuable tool for eval-
uating the performance of RCMs, which is currently the
only source for assessing the melt volume of the Green-
land Ice Sheet on a global scale. By utilizing observations
of melt extent by ASCAT, we can evaluate how well four
different RCMs’ melt outputs represent melt spatially and
temporally across the Greenland Ice Sheet in the present
day. To ensure that the RCM-modeled melt aligns well with
in situ observations, we compare the RCM melt output at
the PROMICE GC-net AWS. Assuming a strong correla-
tion between 2 m air temperature and melting, we can use
PROMICE air temperature measurements to assess temper-
ature biases and determine a melting threshold in the RCMs
to identify days with significant melt. Here, we find that
HIRHAM5 forced with ERA5 shows potential issues with
the representation of melt due to its relatively poor alignment
with PROMICE air temperature measurements. HIRHAM5

forced with ERA-Interim, MARv3.12, and RACMO2p2.3
all show similar alignment with PROMICE. When compar-
ing with ASCAT melt extent, MARv3.12 and RACMO2p2.3
show better agreement with ASCAT, but each RCM shows
distinct patterns of variations. This suggests that in some
cases, one RCM can represent present-day melt extent across
the entire ice sheet more effectively than the ensemble mean,
as the variability among the models does not appear to be
random variations. For all RCMs included in this study, the
onset of melt occurs more than a week later than what is ob-
served from ASCAT, even when accounting for the averag-
ing of satellite data. Further, we see that the regions with the
largest differences in the total number of melt days across all
RCMs are the SW and SE basins of the ice sheet, an indica-
tion that melt is likely not well represented in the RCMs in
these areas.

The variability among modeled JJA air temperature, SWD,
and surface albedo can explain the large discrepancies in
modeled meltwater production (Fig. 2). Notably, we show
the implications for meltwater production when running the
HIRHAM5 SMB model using ERA5 instead of ERAI with-
out any recalibration. Further, ensuring that the models ac-
curately simulate the variability in albedo, such as by in-
corporating MODIS bare ice data, can lead to a more ac-
curate representation of the surface energy balance and, con-
sequently, meltwater production. Despite the fact that both
RACMO2.3p3 and HIRHAM5-ERAI use similar MODIS
bare ice observations and have similar dynamical schemes,
the surface albedo and its effects on meltwater produc-
tion varied substantially between models, highlighting the
need for a critical evaluation of model outputs against high-
quality measurements to reduce inter-model discrepancies.
In general, our analysis demonstrates the value of using in-
dependent datasets like ASCAT wet-snow maps to identify
the spatiotemporal variability of RCM-simulated melt. This
approach complements traditional model validation meth-
ods and intercomparison exercises, which can inform future
model development to better simulate ice sheet surface melt
and potentially be incorporated into future MIP efforts.
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Appendix A: Comparison between RCMs and ASCAT
using the baseline threshold of 0.1 mmw.e.d−1

Figure A1. (a–d) The mean annual number of melt days modeled by the RCMs using a baseline threshold (0.1 mmw.e.d−1) to define days
with significant melt. Pixels with < 1 d of melt on average are indicated in white, showcasing areas where melt rarely occurs. (e–h) The
mean annual difference between the number of melt days in ASCAT and RCM areas above the 2007–2020 maximum snow line elevation
(Fig. 4d). The red areas correspond to more melt days in ASCAT on average, and the blue areas correspond to more melt days in the RCMs
on average. Melt in ASCAT is defined as ST-2A and ST-2B.
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