Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1103-2025
https://doi.org/10.5194/tc-19-1103-2025
Research article
 | 
11 Mar 2025
Research article |  | 11 Mar 2025

InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions

Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri

Related authors

Land cover succession for recently drained lakes in permafrost on the Yamal Peninsula, Western Siberia
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024,https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Circumarctic land cover diversity considering wetness gradients
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024,https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Active-layer thickness estimation from X-band SAR backscatter intensity
Barbara Widhalm, Annett Bartsch, Marina Leibman, and Artem Khomutov
The Cryosphere, 11, 483–496, https://doi.org/10.5194/tc-11-483-2017,https://doi.org/10.5194/tc-11-483-2017, 2017
Short summary
Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra?
Annett Bartsch, Barbara Widhalm, Peter Kuhry, Gustaf Hugelius, Juri Palmtag, and Matthias Benjamin Siewert
Biogeosciences, 13, 5453–5470, https://doi.org/10.5194/bg-13-5453-2016,https://doi.org/10.5194/bg-13-5453-2016, 2016
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Multitemporal UAV lidar detects seasonal heave and subsidence on palsas
Cas Renette, Mats Olvmo, Sofia Thorsson, Björn Holmer, and Heather Reese
The Cryosphere, 18, 5465–5480, https://doi.org/10.5194/tc-18-5465-2024,https://doi.org/10.5194/tc-18-5465-2024, 2024
Short summary
Land cover succession for recently drained lakes in permafrost on the Yamal Peninsula, Western Siberia
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024,https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024,https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, Adam P. Young, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1656,https://doi.org/10.5194/egusphere-2024-1656, 2024
Short summary

Cited articles

Anders, K., Antonova, S., Beck, I., Boike, J., Höfle, B., Langer, M., Marsh, P., and Marx, S.: Multisensor ground-based measurements of the permafrost thaw subsidence in the Trail Valley Creek, NWT, Canada, 2015–2016, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.888566, 2018. a, b
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A., Heim, B., Langer, M., Bornemann, N., and Boike, J.: Thaw Subsidence of a Yedoma Landscape in Northern Siberia, Measured In Situ and Estimated from TerraSAR-X Interferometry, Remote Sens., 10, 494, https://doi.org/10.3390/rs10040494, 2018. a, b, c
Babkin, E. M., Khomutov, A. V., Dvornikov, Y. A., Khairullin, R. R., and Babkina, E. A.: Relief changes of the peat plateu with melting of polygonal-wedge ice in the northern part of the Pur-Taz interfluve, Regional Environmental Issues, 4, 115–119, https://doi.org/10.24411/1728-323X-2018-14115, 2018. a, b
Barrett, B. W., Dwyer, E., and Whelan, P.: Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques, Remote Sens., 1, 210–242, https://doi.org/10.3390/rs1030210, 2009. a
Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J., and Anderson, C.: Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT), Geophys. Res. Lett., 34, L20401, https://doi.org/10.1029/2007GL031088, 2007. a
Download
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Share