Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-849-2024
https://doi.org/10.5194/tc-18-849-2024
Research article
 | 
23 Feb 2024
Research article |  | 23 Feb 2024

A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations

Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser

Related authors

Monitoring snow depth variations in an avalanche release area using low cost LiDAR and optical sensors
Pia Ruttner-Jansen, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
EGUsphere, https://doi.org/10.5194/egusphere-2024-744,https://doi.org/10.5194/egusphere-2024-744, 2024
Short summary
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023,https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
THE STABILITY OF A PERMANENT TERRESTRIAL LASER SCANNING SYSTEM – A CASE STUDY WITH HOURLY SCANS
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile
Annelies Voordendag, Marion Réveillet, Shelley MacDonell, and Stef Lhermitte
The Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-2021,https://doi.org/10.5194/tc-15-4241-2021, 2021
Short summary
AUTOMATED AND PERMANENT LONG-RANGE TERRESTRIAL LASER SCANNING IN A HIGH MOUNTAIN ENVIRONMENT: SETUP AND FIRST RESULTS
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021,https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021

Related subject area

Discipline: Snow | Subject: Atmospheric Interactions
Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024,https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
From atmospheric water isotopes measurement to firn core interpretation in Adélie Land: a case study for isotope-enabled atmospheric models in Antarctica
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023,https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Black carbon concentrations and modeled smoke deposition fluxes to the bare-ice dark zone of the Greenland Ice Sheet
Alia L. Khan, Peng Xian, and Joshua P. Schwarz
The Cryosphere, 17, 2909–2918, https://doi.org/10.5194/tc-17-2909-2023,https://doi.org/10.5194/tc-17-2909-2023, 2023
Short summary
Dynamics of the snow grain size in a windy coastal area of Antarctica from continuous in situ spectral-albedo measurements
Sara Arioli, Ghislain Picard, Laurent Arnaud, and Vincent Favier
The Cryosphere, 17, 2323–2342, https://doi.org/10.5194/tc-17-2323-2023,https://doi.org/10.5194/tc-17-2323-2023, 2023
Short summary
Forcing and impact of the Northern Hemisphere continental snow cover in 1979–2014
Guillaume Gastineau, Claude Frankignoul, Yongqi Gao, Yu-Chiao Liang, Young-Oh Kwon, Annalisa Cherchi, Rohit Ghosh, Elisa Manzini, Daniela Matei, Jennifer Mecking, Lingling Suo, Tian Tian, Shuting Yang, and Ying Zhang
The Cryosphere, 17, 2157–2184, https://doi.org/10.5194/tc-17-2157-2023,https://doi.org/10.5194/tc-17-2157-2023, 2023
Short summary

Cited articles

ACINN: ACINN Stations, Department for Atmospheric and Cryospheric Sciences, Universität Innsbruck [data set], https://acinn-data.uibk.ac.at/pages/station-list.html, last access: 19 February 2024. a
Aksamit, N. O. and Pomeroy, J. W.: Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms, The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, 2016. a
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA technical report NWS, 19, United States, National Weather Service, https://repository.library.noaa.gov/view/noaa/6392 (last access: 13 February 2024), 1976. a, b
Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a Multi-Layer Snow Scheme on Near-Surface Weather Forecasts, J. Adv. Model. Earth Sy., 11, 4687–4710, https://doi.org/10.1029/2019MS001725, 2019. a
Baron, M., Haddjeri, A., Lafaysse, M., Le Toumelin, L., Vionnet, V., and Fructus, M.: SnowPappus v1.0, a blowing-snow model for large-scale applications of Crocus snow scheme, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2023-43, in review, 2023. a
Download
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.