Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5207-2024
https://doi.org/10.5194/tc-18-5207-2024
Research article
 | 
15 Nov 2024
Research article |  | 15 Nov 2024

Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under conditions of high ice-shelf basal melt

Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman

Related authors

Computationally efficient subglacial drainage modelling using Gaussian Process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
EGUsphere, https://doi.org/10.22541/essoar.172736254.41350153/v2,https://doi.org/10.22541/essoar.172736254.41350153/v2, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Antarctic climate response in Last Interglacial simulations using the Community Earth System Model (CESM2)
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past, 20, 2349–2371, https://doi.org/10.5194/cp-20-2349-2024,https://doi.org/10.5194/cp-20-2349-2024, 2024
Short summary
Subglacial discharge effects on basal melting of a rotating, idealized ice shelf
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2297,https://doi.org/10.5194/egusphere-2024-2297, 2024
Short summary
An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change
John D. Jakeman, Mauro Perego, D. Thomas Seidl, Tucker A. Hartland, Trevor R. Hillebrand, Matthew J. Hoffman, and Stephen F. Price
EGUsphere, https://doi.org/10.5194/egusphere-2024-2209,https://doi.org/10.5194/egusphere-2024-2209, 2024
Short summary
Ice-shelf freshwater triggers for the Filchner–Ronne Ice Shelf melt tipping point in a global ocean–sea-ice model
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024,https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Sheets
The influence of firn layer material properties on surface crevasse propagation in glaciers and ice shelves
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martínez-Pañeda
The Cryosphere, 18, 5573–5593, https://doi.org/10.5194/tc-18-5573-2024,https://doi.org/10.5194/tc-18-5573-2024, 2024
Short summary
Spatio-Temporal Patterns of Accumulation and Surface Roughness in Interior Greenland with a GNSS-IR Network
Derek James Pickell, Robert Lyman Hawley, and Adam LeWinter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2898,https://doi.org/10.5194/egusphere-2024-2898, 2024
Short summary
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary

Cited articles

Alevropoulos-Borrill, A. V., Nias, I. J., Payne, A. J., Golledge, N. R., and Bingham, R. J.: Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100, The Cryosphere, 14, 1245–1258, https://doi.org/10.5194/tc-14-1245-2020, 2020. a
Andreasen, J. R., Hogg, A. E., and Selley, H. L.: Change in Antarctic ice shelf area from 2009 to 2019, The Cryosphere, 17, 2059–2072, https://doi.org/10.5194/tc-17-2059-2023, 2023. a, b, c, d
Aschwanden, A. and Brinkerhoff, D. J.: Calibrated Mass Loss Predictions for the Greenland Ice Sheet, Geophys. Res. Lett., 49, e2022GL099058, https://doi.org/10.1029/2022GL099058, 2022. a
Bassis, J. and Ma, Y.: Evolution of Basal Crevasses Links Ice Shelf Stability to Ocean Forcing, Earth Planet. Sc. Lett., 409, 203–211, https://doi.org/10.1016/j.epsl.2014.11.003, 2015. a, b
Bassis, J. and Walker, C.: Upper and Lower Limits on the Stability of Calving Glaciers from the Yield Strength Envelope of Ice, P. Roy. Soc. A-Math. Phy., 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. a, b
Download
Short summary
We investigate potential sea-level rise from Antarctica's Lambert Glacier, once considered stable but now at risk due to projected ocean warming by 2100. Using statistical methods and limited supercomputer simulations, we calibrated our ice-sheet model using three observables. We find that, under high greenhouse gas emissions, glacier retreat could raise sea levels by 46–133 mm by 2300. This study highlights the need for better observations to reduce uncertainty in ice-sheet model projections.