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Abstract. Antarctica’s Lambert Glacier drains about one-
sixth of the ice from the East Antarctic Ice Sheet and is con-
sidered stable due to the strong buttressing provided by the
Amery Ice Shelf. While previous projections of the sea-level
contribution from this sector of the ice sheet have predicted
significant mass loss only with near-complete removal of the
ice shelf, the ocean warming necessary for this was deemed
unlikely. Recent climate projections through 2300 indicate
that sufficient ocean warming is a distinct possibility after
2100. This work explores the impact of parametric uncer-
tainty on projections of the response of the Lambert–Amery
system (hereafter “the Amery sector”) to abrupt ocean warm-
ing through Bayesian calibration of a perturbed-parameter
ice-sheet model ensemble. We address the computational
cost of uncertainty quantification for ice-sheet model pro-
jections via statistical emulation, which employs surrogate
models for fast and inexpensive parameter space exploration
while retaining critical features of the high-fidelity simula-
tions. To this end, we build Gaussian process (GP) emulators
from simulations of the Amery sector at a medium resolu-
tion (4–20 km mesh) using the Model for Prediction Across
Scales (MPAS)-Albany Land Ice (MALI) model. We con-
sider six input parameters that control basal friction, ice stiff-
ness, calving, and ice-shelf basal melting. From these, we
generate 200 perturbed input parameter initializations using
space filling Sobol sampling. For our end-to-end probabilis-
tic modeling workflow, we first train emulators on the simu-
lation ensemble and then calibrate the input parameters using
observations of the mass balance, grounding line movement,
and calving front movement with priors assigned via expert

knowledge. Next, we use MALI to project a subset of simula-
tions to 2300 using ocean and atmosphere forcings from a cli-
mate model for both low- and high-greenhouse-gas-emission
scenarios. From these simulation outputs, we build multi-
variate emulators by combining GP regression with princi-
pal component dimension reduction to emulate multivariate
sea-level contribution time series data from the MALI sim-
ulations. We then use these emulators to propagate uncer-
tainty from model input parameters to predictions of glacier
mass loss through 2300, demonstrating that the calibrated
posterior distributions have both greater mass loss and re-
duced variance compared to the uncalibrated prior distribu-
tions. Parametric uncertainty is large enough through about
2130 that the two projections under different emission sce-
narios are indistinguishable from one another. However, af-
ter rapid ocean warming in the first half of the 22nd century,
the projections become statistically distinct within decades.
Overall, this study demonstrates an efficient Bayesian cali-
bration and uncertainty propagation workflow for ice-sheet
model projections and identifies the potential for large sea-
level rise contributions from the Amery sector of the Antarc-
tic Ice Sheet after 2100 under high-greenhouse-gas-emission
scenarios.

1 Introduction

With an area of slightly more than 60 000 km2 (Andreasen
et al., 2023), the Amery Ice Shelf (AmIS) is the third-largest
ice shelf in Antarctica and drains approximately 16 % of the
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ice from East Antarctica (Fricker et al., 2002) (Fig. 1). The
AmIS is considered particularly stable due to its location in
a narrow embayment with many pinning points (Pittard et
al., 2017); the convergent flow of the Lambert, Fisher, and
Mellor glaciers entering the ice shelf (Gong et al., 2014);
and a prograde bed slope beneath the grounded ice feed-
ing the ice shelf (Morlighem et al., 2020). The most re-
cent in-depth model projection study of the Amery sector
(Lambert–Amery system) of the Antarctic Ice Sheet predicts
an insignificant sea-level contribution from this sector for the
next 500 years, barring extreme ocean temperature increases,
which at that time were considered unlikely (Pittard et al.,
2017).

However, new projections of the Antarctic Ice Sheet using
global climate model (GCM) ocean and atmospheric condi-
tions through 2300 indicate that extreme ocean warming and
the subsequent ocean-melt-driven and/or surface-melt-driven
removal of most major ice shelves, including the AmIS, are
possible after 2100 (Seroussi et al., 2023). Removal or ex-
tensive thinning of the ice shelf will accelerate the grounded
ice through a reduction in buttressing (Gudmundsson et al.,
2019; Zhang et al., 2020), causing a substantially larger con-
tribution to sea-level rise than previously projected. Ice-shelf
cavities in Antarctica generally can be characterized as cold
or warm, depending on whether their circulation and melt-
ing are controlled by cold, saline shelf water or by deeper,
relatively warm, saline modified Circumpolar Deep Water
(mCDW) (Dinniman et al., 2016). Changes in the access of
these water masses to the ice-shelf base can lead to a regime
shift and a rapid change in ice-shelf basal melt rates of an
order of magnitude (Hazel and Stewart, 2020; Haid et al.,
2023). Under present conditions, only small intrusions of
mCDW reach the AmIS (Liu et al., 2017). However, in a
high-greenhouse-gas-emission scenario, more pervasive ac-
cess of mCDW to the ice-shelf base appears possible after
2100, as shown in the four GCM projections used by Seroussi
et al. (2024) (Fig. 2). With these projections indicating the
potential for removal of the AmIS through increased sub-
marine melting, the long-term stability of the AmIS sector
should be reevaluated.

Ice-sheet models inherently rely on uncertain model pa-
rameterizations (e.g., to represent unresolved sub-grid-scale
physical processes or unobserved mechanical and thermody-
namic ice characteristics), which introduce uncertainty into
the models’ predictions of a glacier’s dynamic response to
changes in climate forcing. Therefore, assessing the AmIS
sector’s response to a potential sudden increase in ice-
shelf basal melting during the 22nd century requires thor-
ough quantification of this parametric uncertainty. Quanti-
fying how uncertainties in input parameters influence future
predictions is often achieved through uncertainty propaga-
tion, typically using Monte Carlo sampling over the input
space. Bayesian calibration, or probabilistic parameter esti-
mation, extends uncertainty propagation by providing a sys-
tematic framework for integrating observational data and ex-

pert knowledge to constrain the distribution of input uncer-
tainties. This, in turn, allows for the generation of observa-
tionally constrained probabilistic projections. Bayesian cali-
bration not only enhances the reliability of ice-sheet model
projections but also provides insights into the sources of
uncertainties and the impacts of these uncertainties on pro-
jections. This calibration workflow, which typically requires
Monte Carlo sampling over computationally expensive para-
metric model ensembles, becomes tractable when combined
with statistical emulation of the expensive ice-sheet model.
The result is a rigorous method for quantifying and com-
municating the reliability of model predictions, which aids
decision-making in climate science and policy. Numerous
studies have introduced formal uncertainty quantification
methods into ice-sheet modeling to generate probabilistic
projections of future contributions to sea-level change from
various glaciers and ice sheets (Bulthuis et al., 2019; Nias et
al., 2019, 2023; Alevropoulos-Borrill et al., 2020; Gilford et
al., 2020; Wernecke et al., 2020; Lee et al., 2020; Edwards
et al., 2021; Berdahl et al., 2021, 2023; Hill et al., 2021; As-
chwanden and Brinkerhoff, 2022; Chang et al., 2022; Bevan
et al., 2023; Johnson et al., 2023; Seroussi et al., 2023; Van
Katwyk et al., 2023). In this study, we apply such methods
to the AmIS catchment for the first time to answer the fol-
lowing scientific question: how does parametric uncertainty,
when constrained by observations, affect the projected ice-
sheet response to abrupt changes in the oceanic forcing of
the Amery Ice Shelf sector of Antarctica?

To address this question, we apply a regional ice-sheet
model of the AmIS catchment to generate an ensemble of
simulations with parameter values perturbed over their likely
ranges. Using statistical emulation of the resulting ensemble,
we perform Bayesian calibration on the uncertain model pa-
rameters, using observations of key glacier quantities from
the historical period. By sampling from the posterior distri-
bution of parameter values and combining ensembles of ice-
sheet model projections with statistical emulation, we gen-
erate calibrated, probabilistic projections of the future con-
tribution of the AmIS sector to sea level under two climate
scenarios.

In this work, we first present the ice-sheet model configu-
rations used in our study, followed by a detailed description
of the Bayesian modeling framework, including the statisti-
cal emulation that enables efficient Monte Carlo sampling.
Finally, we share our results and discuss their implications
for the future of the AmIS sector of the East Antarctic Ice
Sheet (EAIS). We also discuss how these methods may be
extended to more complex problems, including those con-
cerning the entire Antarctic Ice Sheet.

2 Ice-sheet model description

For our simulations, we use the MPAS-Albany Land Ice
(MALI) model (Hoffman et al., 2018), applied to a regional
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Figure 1. Model domain encompassing the Amery Ice Shelf and Lambert Glacier catchment. The red line in the panel (c) inset map shows
the catchment location within the broader Antarctic Ice Sheet. (a) Bedrock elevation (colors), with gray lines contouring the MALI mesh
resolution. (b) Observed ice surface speed. (c) Difference between modeled, optimized initial, and observed ice surface speeds. In all panels,
the black line represents the grounding line, and the light-blue shading indicates the open ocean in the model domain. The pink line in
panels (b) and (c) indicates the observed 50 myr−1 ice surface speed contour.

Figure 2. (a) Time series of thermal forcing averaged over the ice-shelf base from approximately the year 2000 for the UK Earth System
Model (UKESM) under the Shared Socioeconomic Pathway 1 (SSP1; orange) and SSP5 (purple) scenarios, along with three additional
scenarios for Representative Concentration Pathway 8.5 (RCP8.5) and SSP5 from other Earth system models provided by the Ice Sheet
Model Intercomparison Project for CMIP6 (ISMIP6): HadGEM2 (solid gray line), CESM2 (dashed gray line), and the Community Climate
System Model (CCSM; dotted gray line). (b) Time series of the 10-year running mean of total surface mass balance over the AmIS catchment.
Shaded regions denote 1 standard deviation (Seroussi et al., 2024).

domain of the AmIS catchment (Fig. 1). Here, we describe
the main model features employed in this study, highlight-
ing equations with uncertain model parameters, and refer the
reader to references for other details.

2.1 Model configuration

MALI is a variable-resolution mesh-based ice-sheet model
that solves the first-order, three-dimensional (3D) Blatter–
Pattyn approximation of the Stokes equations for momentum
balance using the finite-element method. We use the common
constitutive relation τij = 2ηeε̇ij , where τij is the deviatoric
stress tensor, ε̇ij is the strain rate tensor, and ηe is the ef-
fective ice viscosity given by Nye’s generalization of Glen’s
flow law (Glen, 1955; Nye, 1957),

ηe = CφφA
−

1
n ε̇

1−n
n

e , (1)

where A is a temperature-dependent rate factor, n is an ex-
ponent with a value of 3 for polycrystalline glacier ice, φ is
a spatially varying ice stiffness factor accounting for the im-
pacts of unresolved processes (e.g., fabric) on ice rheology,
and Cφ is a spatially uniform ice stiffness adjustment fac-
tor taken as an uncertain parameter. We use a power law for
basal friction of the form

τb = Cµµ|ub|
q−1ub, (2)

where τb is basal shear stress, ub is the slip velocity at the
glacier bed, and 0< q ≤ 0.333 is an uncertain power law ex-
ponent representing the degree of plasticity of the bed. More-
over, µ is a spatially varying friction parameter, and Cµ is a
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scalar basal friction adjustment factor taken as an uncertain
parameter.

Thickness and tracer (temperature) advection is performed
with a first-order upwind scheme implemented with the
finite-volume method. The configuration here employs ther-
momechanical coupling and a temperature-based thermal
solver. MALI uses a forward Euler time integration scheme
with an adaptive time step, selected here to be one-fifth of the
time interval defined by the advective Courant–Friedrichs–
Lewy (CFL) condition. This is smaller than what is typically
chosen for MALI, but it minimizes the chances of unstable
model behavior when ignoring the diffusive CFL condition
and exploring a wide spectrum of parameter space.

We also employ parameterizations for calving, ice-shelf
basal melting, and submarine melting of grounded marine
termini (as described in Hillebrand et al., 2022). MALI’s
subglacial hydrology model (Hager et al., 2022) and glacier
isostatic adjustment (Book et al., 2022) are not used in this
study.

For calving, we apply the von Mises stress calving param-
eterization from Morlighem et al. (2016),

c = |u|
σ

σmax
, (3)

where c is calving velocity, u is depth-averaged ice veloc-
ity, σ is depth-averaged von Mises tensile stress, and σmax
is yield stress treated as a tuning parameter. Because there
are negligible grounded marine calving fronts currently in
the Amery catchment, it is not possible to calibrate grounded
margin calving, which, in practice, may require a differ-
ent yield stress parameter than that for floating ice (Choi et
al., 2017; Hillebrand et al., 2022). Furthermore, Hillebrand
et al. (2022) identify a possible positive feedback between
grounded calving and basal slip when both σmax and q are
small, leading to unrealistically catastrophic glacier retreat –
behavior that was echoed in preliminary runs of this work.
To avoid these complexities, given the large range of pa-
rameters being considered, we disable grounded calving en-
tirely. Thus, the glacier retreat in simulations where signifi-
cant grounded calving fronts develop (following the loss of
ice shelves) should be regarded as a conservative projection
as it is likely underestimated under such conditions.

For ice-shelf basal melting, we use the scheme by Jourdain
et al. (2020), which is designed for Antarctic ice shelves and
prescribed in the ISMIP6-Antarctica experimental protocol
(Nowicki et al., 2020; Seroussi et al., 2020). This parame-
terization defines spatially varying ice-shelf basal melt rates
(m) as a function of ocean thermal forcing along the ice-shelf
base (TF), which is the difference between the ocean temper-
ature and the local ocean freezing temperature:

m= γ0

(
ρswcpw

ρiLf

)2

(TF+ δT )|〈TF〉+ δT |, (4)

where ρsw is the density of seawater, cpw is the specific heat
of seawater, ρi is the density of glacier ice, Lf is the latent

heat of fusion of ice, and 〈TF〉 is the thermal forcing av-
eraged over the entire ice-shelf base. The coefficient γ0 is
an uncertain proportionality constant, and δT is an uncertain
bias correction factor.

For grounded marine termini, the melt rate perpendicular
to the horizontal calving front (mg) is parameterized using
the form mg = (Ahq

α
sq+B)TFβb (Rignot et al., 2016; Slater

et al., 2020), where A= 0.0003 mα dα−1 °C−β , h is water
depth at the terminus (in meters), qsq is subglacial runoff
(in md−1), α = 0.39, B = 0.15 md−1 °C−β , β = 1.18, and
TFb is the ocean thermal forcing at the bed depth. Because
the Amery catchment currently has negligible grounded ma-
rine margins, we are unable to tune this process and instead
use the standard parameter values prescribed for ISMIP6-
Greenland (Slater et al., 2020) without uncertainty, conser-
vatively assuming qsq = 0. Despite being negligible in the
initial state, significant grounded marine termini develop late
in some future scenarios after ice shelves have largely disap-
peared.

2.2 Amery Ice Shelf catchment domain

The regional simulation domain is defined by the Amery
B–C region used in Rignot et al. (2019), which encom-
passes all ice flowing into the AmIS (Fig. 1). This re-
gional domain is extracted from the whole Antarctic do-
main used by MALI for the intercomparison study ISMIP6-
Projections2300-Antarctica (Seroussi et al., 2023). The mesh
resolution is 4 km in areas of fast flow (log10(us) > 2.5,
where us is the observed ice surface speed in myr−1) or near
the 2015 grounding line (< 10 km) and coarsens to 20 km
in locations of slow flow (log10(us) < 0.75) or in locations
far (> 100 km) from the grounding line (Fig. 1a). The mesh
contains a total of 53 523 cells. The vertical coordinate has
five terrain-following layers, with a higher resolution near the
bed. The overall moderate mesh resolution is chosen to make
a large ensemble of simulations computationally feasible.

Ice thickness and bed topography are interpolated
from BedMachine Antarctica v2 (Morlighem et al., 2020;
Morlighem, 2022) using conservative remapping. The spa-
tially varying and time-invariant basal friction (µ) and ice
stiffness (φ) fields are solved for the entire Antarctic Ice
Sheet using a partial-differential-equation-constrained opti-
mization problem (Perego et al., 2014), minimizing the mis-
fit of ice surface velocity relative to observations from 1996
to 2016 (Mouginot et al., 2017) (Fig. 1c). The solution to the
optimization problem satisfies the momentum balance and
steady-state thermodynamics, yielding a consistent initial ice
temperature and velocity field. For both optimization and for-
ward simulations, the thermal basal boundary condition is
provided by the geothermal flux map from Shapiro and Ritz-
woller (2004), and the thermal surface boundary condition is
the mean annual air temperature from the RACMO2.1 1979–
2010 climatology (Lenaerts et al., 2012).
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2.3 Climate scenarios

Four climate forcing scenarios are used, each consisting
of surface mass balance and 3D ocean thermal forcing.
The climate forcing follows the ISMIP6-Projections2300-
Antarctica protocol (Seroussi et al., 2023) applied to our re-
gional domain. The two future climate scenarios considered
come from the UK Earth System Model (UKESM) (Sel-
lar et al., 2020) – the one climate model used in ISMIP6-
Projections2300-Antarctica for which both low- and high-
emission scenarios are available. Climate model structural
uncertainty is not considered in this study, and the two future
scenarios used should be considered broadly representative
of high- and low-greenhouse-gas-emission scenarios.

For all the surface mass balance fields used, we add a large
negative surface mass balance to land-based locations that
are ice-free in our initial condition to prevent ice advance into
these areas, where basal friction is unconstrained. The asso-
ciated mass loss from this approximation is< 2 % of the spa-
tially integrated mass balance and is not a significant term in
the overall glacier mass balance. Surface air temperature, the
upper boundary condition for ice thermodynamics, is kept at
its historical value throughout all simulations.

Historical relaxation (RELX). For each ensemble mem-
ber, we conduct a 50-year relaxation run from the ini-
tial conditions using historical climate forcing to in-
tegrate out fast transient behavior. For surface mass
balance, we apply a 1995–2017 climatological aver-
age from RACMO2.3p1 (Van Wessem et al., 2014; van
den Broeke, 2019). The ocean thermal forcing is the
observation-based climatology compiled for ISMIP6-
Antarctica, which uses data from 1995–2018 (Jourdain
et al., 2020; Nowicki et al., 2020). The 50-year relax-
ation duration is chosen as the most rapid adjustments
occur in the first few decades of integration, while long-
term adjustment to a fully steady state would take thou-
sands of years. Relaxation to a full steady state would
require substantially more computing resources than are
available for our entire set of ensembles, which would
lead to different runs potentially having very divergent
initial states. Future improvements to model initializa-
tion that account for surface elevation change (Perego
et al., 2014) may reduce initial model drift and enhance
this requirement. The final model state in each run at
the end of RELX is given the nominal date of 1 January
2015, and all three projection ensembles branch from
these states.

Control projection (CTRL). The CTRL projection ensem-
ble extends from the RELX configurations, continuing
with the same surface mass balance and ocean thermal
forcing from 1 January 2015 to 1 January 2300. This
ensemble is used to assess model drift relative to the
forced response of the climate scenarios.

Shared Socioeconomic Pathway 1-2.6 projection (SSP1).
Our SSP1 projection uses annual surface mass balance
and ocean thermal forcing derived from a UKESM
SSP1-2.6 climate scenario (“expAE10” from Seroussi
et al., 2024). To avoid issues with climate model bias
and abrupt changes in forcing, surface mass balance
and ocean thermal forcing are applied as anomalies
relative to the climatological mean forcings in the
RELX and CTRL ensembles. The ensemble is run from
1 January 2015 to 1 January 2300.

SSP5-8.5 projection (SSP5). Our SSP5 projection uses
UKESM SSP5-8.5 projection forcings (“expAE05” in
Seroussi et al., 2024), again applied as anomalies and
covering the period from 2015 to 2300.

3 Bayesian modeling framework

This section details the methodology used to facilitate the
end-to-end probabilistic modeling workflow featured in this
work.

3.1 Perturbed-parameter ensemble design

To quantify parametric uncertainty, MALI input parameters
are varied to generate ensembles of MALI simulations. Here,
we elaborate on the input parameters considered in this study,
their prior distributions, and the sampling strategy used to
generate their values in the MALI simulations.

3.1.1 MALI parameters

The six MALI input parameters considered are summarized
in Table 1. In Fig. 7, the dashed green lines represent the prior
probability distribution for each parameter.

The ranges for ice stiffness scaling and basal friction scal-
ing factors correspond to the values at which yield veloc-
ity solutions exceed observational uncertainty and variabil-
ity, based on sensitivity tests. For the basal slip exponent,
the high end of the sampled range is the theoretically de-
rived exponent for a hard bed (Weertman, 1957). The low-
end value of 0.1 is less than the estimated exponents for dif-
ferent Antarctic glaciers, i.e., q < 0.2 (Gillet-Chaulet et al.,
2016) and q = 0.11 (Nias et al., 2018). The sampled range
for calving yield stress spans the values that produce ap-
proximately stable calving front positions in MALI for all
major Antarctic regions, based on sensitivity tests exploring
model configurations for MALI’s contribution to Seroussi et
al. (2023). The low end of the sampled range for the ice-
shelf melt coefficient is the 5th percentile value for the non-
local Antarctic-wide (MeanAnt) tuning from Jourdain et al.
(2020), while the high end is the 95th percentile value for
the high-melt-sensitivity tuning (Pine Island grounding line
(PIGL)) derived from the Pine Island Glacier. This spans the
range of plausible values proposed by Jourdain et al. (2020)
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Table 1. Summary of the MALI parameters and their prior distributions.

MALI model parameter Sampled range Prior distribution

Ice stiffness scaling factor, Cφ (Eq. 1) 0.8–1.2 Truncated normal, centered at 1.0 (2σ values at range limits)
Basal friction scaling factor, Cµ (Eq. 2) 0.8–1.2 Truncated normal, centered at 1.0 (2σ values at range limits)
Basal slip exponent, q (Eq. 2) 0.1–0.333 Trapezoidal (uniform likelihood between 0.15 and 0.28)
Calving yield stress, σmax (Eq. 3) 80–180 kPa Truncated normal, centered at 130 (3σ values at range limits)
Ice-shelf melt coefficient, γ0 (Eq. 4) 9620–471 000 myr−1 Truncated lognormal, where logγ0 ∼N(µ,σ)=N(10,1)
Ice-shelf basal melt rate, m 12–58 Gtyr−1 Truncated normal, centered at 35 (2σ values at range limits)
(ice-shelf mean of m; Eq. 4)

and used in Seroussi et al. (2020). The last uncertain param-
eter identified in Sect. 2.1 is δT , the ocean temperature bias
correction. Because γ0 and δT are strongly dependent via
Eq. (4), it is difficult to prescribe a range and prior distri-
bution for δT , an ad hoc correction factor. Instead, we rep-
resent this degree of freedom using the uncertain historical
ice-shelf-averaged melt rate (m) itself. For a given sample
of m and γ0, we calculate the corresponding value of δT to
be used for said sample. For m, we use a normal distribu-
tion with a mean and standard deviation corresponding to the
AmIS, as reported by Rignot et al. (2013). This distribution
is truncated at the provided range, interpreted as a 2 σ range
around the mean, which we also use to sample the m values.

3.1.2 Space filling sampling strategy

To achieve our objective of training a statistical emulator,
we sample the parameter space uniformly within the defined
bounds presented in Table 1. This approach helps us to learn
the model’s response to varying inputs, rather than relying on
an expert-defined distribution, which we later use as priors in
Bayesian inference. We generate these uniform samples us-
ing a low-discrepancy quasi-random Sobol sequence (Sobol’,
1967). Sobol sequences possess uniform space filling prop-
erties akin to Latin hypercube sampling (McKay et al., 2000;
Urban and Fricker, 2010), but they offer the advantage of re-
cursively adding new points while preserving their space fill-
ing characteristics. This feature is particularly useful when
expanding the ensemble size later. In this study, we design a
200-member ensemble using this method (see Fig. A1). To
ensure sufficient coverage, a well-cited paper by Loeppky et
al. (2009) recommends using at least 10 data points per input
dimension when building an emulator. Given our six input
parameters, this implies a minimum of 60 ensemble mem-
bers. We have selected 200 members to guarantee adequate
data, even if some need to be discarded.

3.2 Observations

We use three scalar observational constraints when perform-
ing Bayesian calibration of MALI parameters – specifically,
mass balance, grounding line movement, and calving front
movement. While additional spatially resolved observations

can be considered (e.g., ice surface velocity or elevation
change rate), we choose to avoid the considerable complex-
ity of weighting spatial misfit and combining spatial and
scalar metrics. Instead, we restrict the observational criteria
to large-scale scalar metrics. The modeled values of these
observables are averaged over the 50-year RELX duration.

Mass balance. We use mass balance measurements of the
grounded ice sheet from Rignot et al. (2019), which
employed the input–output method from 1979–2017.
We calculate the difference between the 39-year aver-
ages of surface mass balance (input) and discharge (out-
put) terms for the AmIS catchment, accounting for their
stated uncertainties, to obtain a mean of−1.656 Gtyr−1

and a standard deviation of 5.720 Gtyr−1. Because these
measurements are calculated from the input–output
method, we compare the values to modeled grounded
mass change rates using the normal distribution likeli-
hoodN(−1.656,5.720) (instead of using volume above
flotation, which is an incomplete representation of mass
balance).

Grounding line movement. Grounding line movement
measurements from Konrad et al. (2018), estimated
from satellite altimetry measurements collected be-
tween 2010 and 2016, are used in this work. We
calculate the average grounding line velocity for the
three glacier regions within the AmIS catchment
(LAM, SCY, and AME, as described in Konrad et al.,
2018), using calculations for regions where ice flow
speed exceeds 25 myr−1 and weighting by the length
of the grounding line captured in their surveys. While
this is the most complete estimate available, the stated
coverage for these three basins is 34 %–36 %, and there
are additional unsurveyed regions within the AmIS. By
repeating the averaging for the 5th and 95th percentile
estimates from Konrad et al. (2018) for these regions
and assuming that errors are normally distributed,
we obtain an estimate of grounding line movement
with a mean of 0.467 myr−1 and a standard deviation
of 3.562 myr−1. For comparison with the modeled
glacier state, we multiply this grounding line velocity
by the length of the grounding line in our domain
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(2117 km) to obtain a grounded area change rate of
0.988± 7.540 km2 yr−1, which we compare against the
modeled grounded area change rate using the normal
distribution likelihood N(0.988,7.540).

Calving front movement. Observations indicate that, like
other large Antarctic ice shelves, the AmIS has a multi-
decadal cycle of gradual advance, followed by stepwise
retreat through the detachment of large tabular icebergs
(Fricker et al., 2002; Greene et al., 2022; Andreasen et
al., 2023). At the same time, the advance-and-retreat
cycle for the AmIS has a negligible impact on condi-
tions in the central ice shelf (King et al., 2009) as these
variations occur well past the portions of the ice shelf
that provide significant buttressing (Fürst et al., 2016).
Thus, the picture of the AmIS is one of stability, with
a long-term front position remaining in the range of the
advance-and-retreat cycle. The von Mises calving pa-
rameterization used cannot represent the advance-and-
retreat cycles because it does not include the processes
of damage and fracture formation that lead to tabular-
iceberg formation. Instead, it can only represent the
long-term average calving behavior. Observations span-
ning the years 1963 to 2021 indicate that calving front
position has varied by 10 000 km2, with the 2015 po-
sition having retreated about 1000 km2 from the most
advanced position (Fricker et al., 2002; Greene et al.,
2022; Andreasen et al., 2023). To use these observa-
tions, we assume that the range from the single observed
AmIS calving cycle has a 50 % likelihood of represent-
ing the true range of stable calving front variations and
define a mean position of −4000 km2 relative to the
2015 initial state, with a standard deviation of 7353 km2

(resulting in a central 50 % probability region for a nor-
mal distribution between −9000 and 1000 km2). For
our simulations, we then define long-term stability with
the pragmatic criterion that the calving front position
over the total simulation duration of 335 years (i.e., the
50-year RELX duration plus the 285-year projection)
should remain within the range of the observed calving
cycle. By dividing the area change by the total simula-
tion duration, we obtain a mean calving front position
change rate of −11.94 km2 yr−1, with a standard devia-
tion of 21.95 km2 yr−1. This observation-based estimate
then is compared to the modeled rate of change in the
total ice area using the normal distribution likelihood
N(−11.94,21.95), which is as a good proxy for calving
front position change given the near absence of terres-
trial and grounded marine margins in the catchment.

3.2.1 Ensemble filtering

Before training the RELX ensemble emulator and calibrat-
ing the parameters, we filter the runs in the RELX ensemble.
The purpose is 2-fold. First, filtering eliminates outliers from

potentially complex regions of parameter space that may re-
duce the skill of the emulators but are negligibly sampled
due to the low likelihood of matching observations. Second,
because in some cases our prior parameter distributions in-
clude regions of parameter space that will be negligibly sam-
pled, eliminating runs from these regions reduces the com-
putational cost of the three MALI projection ensembles. The
applied filter removes runs that exceed 4 standard deviations
of any of the three observational constraints (covering 99.9 %
of the central probability region around the mean in a normal
distribution). This results in a filtered ensemble of 119 out of
the original 200 runs being retained, ensuring approximately
20 ensemble members per input parameter, which adheres to
the general rule of having more than 10 ensemble members
per input parameter, as mentioned in Sect. 3.1.2. These 119
filtered ensemble members are used for all subsequent statis-
tical analyses.

3.3 Statistical emulation

The high-fidelity MALI ice-sheet model simulations rep-
resent ice-sheet dynamics accurately but are computation-
ally expensive, prohibiting their use in generating a large
enough ensemble of simulations for the purposes of un-
certainty quantification. To address this challenge, we con-
struct statistical emulators of MALI simulations that approx-
imate MALI’s behavior and outputs using statistical tech-
niques (Sacks et al., 1989). Once constructed, the statisti-
cal emulators are used to explore the entire parameter space
and capture the essential features of the MALI simulations
at a negligible computational cost. This also reduces the
computational cost of quantifying uncertainty. While ex-
isting literature has demonstrated the use of various types
of emulators, including regression analysis, Gaussian pro-
cesses (GPs), neural networks, and machine learning algo-
rithms (Berdahl et al., 2021; Bulthuis et al., 2019; Edwards
et al., 2019), this study employs univariate and multivariate
(multi-output) emulators based on GP regression.

Gaussian process emulators. GP emulation (Gramacy,
2020) is a Bayesian nonparametric regression technique
widely used to model complex systems. Unlike typical poly-
nomial equations, GPs can capture nonlinear and nonpara-
metric relationships without assuming a specific functional
form. Moreover, by assuming that the underlying process
follows a Gaussian (i.e., normal) distribution, GPs provide
a flexible framework for capturing uncertainty and mak-
ing predictions. GP emulation is a response-surface for-
mulation (Box and Wilson, 1951) that treats the simulator
as an unknown function of its input parameters (Gramacy,
2020). Inherently Bayesian, GPs express knowledge about
unknown functions through probabilistic means, offering a
robust method for modeling and prediction.
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3.3.1 Gaussian process emulation of the RELX
ensemble

For this work, we construct separate scalar GP emulators to
predict the three observables at the end of the 50-year relax-
ation period, using six MALI parameters in the RELX en-
semble.

After performing a thorough search spanning different ker-
nels and their hyperparameters, each GP is constructed us-
ing a linear trend function and a separable Matérn covari-
ance kernel with a smoothness parameter (ν = 2.5). Our fi-
nal choice of the Matérn kernel (ν = 2.5) ensures that the
GP emulator is twice mean square differentiable, provid-
ing a high degree of smoothness while avoiding the over-
smoothness often introduced by the squared exponential ker-
nel (which renders the fitted GP infinitely differentiable).
Following standard practice, the hyperparameters controlling
the mean function, as well as the length scales and variance
of the kernel, are optimized by minimizing the negative log-
likelihood function. The pointwise variance of the posterior
prediction of the GP – referred to as code uncertainty – is
used as a second independent noise term and is added to the
scalar GP emulator’s mean prediction during Bayesian cali-
bration. The code uncertainty represents the error introduced
by the emulator due to training on a small MALI ensemble
(Kennedy and O’Hagan, 2001).

Each emulator is trained using input–output pairs obtained
from the filtered 119-member ensemble and consists of real-
izations of the six input parameters and corresponding scalar
outputs. Both the input parameters and the outputs are nor-
malized to have a unit range of [0,1] and to improve the em-
ulator training (we ensure that the GP predictions remain in
their original output units).

Emulator validation. We train the emulators using 5-fold
cross-validation. To investigate the accuracy of the resulting
GPs, we plot the cross-validation residuals (the difference be-
tween the predicted and true outputs) in Figs. 3a, 4a, and 5a.
The figures indicate that each GP emulator fits the simula-
tion data quite well. Next, we plot the predicted versus actual
values of scalar outputs, as well as the corresponding 50 %
predictive intervals, to assess the emulation skill of our GP
models (Figs. 3b, 4b, and 5b). In each figure, the emulator
predictions are close to the 1 : 1 line, and predictive inter-
vals are narrow, highlighting the good emulation skill with
minimal uncertainty in the trained GP models. Despite dis-
carding 81 runs during filtering, the cross-validation results
(Figs. 3, 4, and 5) show that our GP emulators still perform
well. Interestingly, emulators trained with these 119 filtered
members are more accurate than those trained with all 200
members, although this comparison is omitted for brevity.

We also plot the residuals against the pairwise input pa-
rameters to analyze trends associated with specific input pa-
rameter values leading to outliers in residuals (Figs. 3c, 4c,
and 5c). The figures do not show any significant patterns in

the relationships between the outliers in the residuals and
input parameters. Finally, we plot predictive-coverage plots,
which help assess how well the emulators are calibrated via
predictive intervals (Fig. C7). As expected, perfect predictive
coverage occurs when the model’s predictive intervals align
with the actual outcomes, and any deviation from this per-
fect coverage suggests that the model’s uncertainty estimates
are either too conservative, i.e., underconfident (blue shaded
region below the dashed green line in Fig. C7), or too aggres-
sive, i.e., overconfident (red shaded region above the dashed
green line in Fig. C7). Figure C7a–c show that the GP emu-
lators are slightly underconfident, overconfident, and slightly
overconfident, respectively.

3.4 Bayesian calibration of MALI parameters

Once cross-validation of the GP emulators is complete, we
train the emulators again on the full, filtered ensemble runs
for the Bayesian calibration task. These GPs are then used to
condition (or calibrate) the prior uncertainty in the MALI pa-
rameters on the three observations listed in Sect. 3.2. Specif-
ically, following Kennedy and O’Hagan (2001), we update
the prior probability distributions of the MALI parameters
using Bayes’ rule,

p(θ |D)∝ p(D|θ)p(θ),

where p(θ) denotes the prior distribution of MALI parame-
ters; p(D|θ) represents the likelihood function, which is the
joint probability of the observed data (D) given the param-
eters (θ ); and p(θ |D) is the posterior distribution of MALI
parameters. The prior distributions for the six MALI param-
eters, determined from past literature and previous model ap-
plications, are provided in Fig. 1. The likelihood function is
assumed to be a multivariate Gaussian function with a diag-
onal covariance matrix (6 = Diag[σ 2

1 ,σ
2
2 ,σ

2
3 ]) that satisfies

p(D|θ)∝ exp
[
−

1
2
(f (θ)− d)T6−1(f (θ)− d)

]
,

which is equivalent to assuming that the noise in each of the
three observations is independent. Here, d represents the vec-
tor of the three observations taken in 2015, and f is the vec-
tor of the three emulator outputs for a given θ value. Addi-
tionally, we set the variance term σ 2

j for the j th scalar out-
put as the sum of observational noise variance (σ 2

o,j ) and
code uncertainty (σ 2

c,j ). The values of σo,j are presented
in Sect. 3.2. We then use the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014), a Hamiltonian Monte Carlo
method that requires minimal fine-tuning, to draw samples
from the analytically intractable posterior (p(θ |D)).

Remark. We assume independence due to the lack of knowl-
edge about the correlation structure among three observed
variables as we only have a single observation for each dur-
ing calibration. However, our framework can accommodate
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Figure 3. Analysis of the Gaussian process emulator fit for calving front positions. Plots are shown for (a) residuals versus fitted values,
(b) predicted values versus actual values, and (c) residuals versus pairwise input parameters.

Figure 4. Analysis of the Gaussian process emulator fit for grounding line positions. Plots are shown for (a) residuals versus fitted values,
(b) predicted values versus actual values, and (c) residuals versus pairwise input parameters.
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Figure 5. Analysis of the Gaussian process emulator fit for mass change. Plots are shown for (a) residuals versus fitted values, (b) predicted
values versus actual values, and (c) residuals versus pairwise input parameters.

correlated observables if such information becomes avail-
able.

3.5 Principal component emulation of projection
ensembles

This study’s primary goal is to constrain and quantify the fu-
ture contribution of the AmIS catchment to global mean sea
level using an ensemble of MALI simulations corresponding
to those drawn from the posterior distribution of our input
parameters. To achieve this, we calculate the sea-level con-
tribution from the years 2015 to 2300 as the change in vol-
ume above flotation (VAF) converted to its sea-level equiva-
lent (SLE), following the definitions in Goelzer et al. (2020).
We build and employ GP emulators to accelerate the proba-
bilistic SLE projections for three different scenarios (CTRL,
SSP1, and SSP5). The VAF in each of our projection ensem-
bles (CTRL, SSP1, and SSP5) is based on time series data
from 2015 to 2300. With high autocorrelation, a multivari-
ate (multi-output) emulator is more effective than individual
scalar emulators for individual years, which can be cumber-
some as additional treatment is required to account for auto-
correlated data in consecutive years. To build a multivariate
emulator, we employ principal component analysis (PCA) to
extract linear reduced-dimensional subspace of the time se-
ries, similar to Higdon et al. (2008) and Wilkinson (2010). To
this end, PCA provides projected data with maximized vari-
ance and dimensions that are uncorrelated but not necessarily
independent.

We build the GP emulators using an ensemble of VAF
change projections and the input parameter values from the
filtered RELX ensemble. The resulting projection ensemble
consists of data from 119 simulated time series for VAF
change over 285 years. Motivated by Higdon et al. (2008),
PCA is used to reduce the dimensionality of this time series
data from 285 toK = 5 principal components (a detailed de-
scription of these steps is available in Appendix B1). The
valueK = 5 is chosen because the retained principal compo-
nents are able to explain > 99 % of the variance in the orig-
inal data. After this dimensionality reduction, we indepen-
dently construct GP emulators to approximate the relation-
ship between the input parameters and each of the retained
principal components. When training the GPs, we transform
the principal components and input parameters using a unit
range of [0,1] for the transformations and, again, employ 5-
fold cross-validation to validate the resulting PCA-based GP
emulators. We reconstruct the mean and variance of the time
series predictions from theK emulated principal components
using the procedure in Appendix B2.

Figure 6 summarizes the results of the PCA emulator 5-
fold cross-validation for the SSP5 projection scenario with
respect to the year 2300. Similar results for the CTRL and
SSP1 projection ensembles are shown in Figs. C1 and C2,
respectively. Figure 6a shows that there is no strong pattern
in the plot of residuals versus fitted values. Moreover, the
PCA emulator predictions are close to the 1 : 1 line and have
narrow predictive intervals (Fig. 6b), and no specific patterns
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of residuals corresponding to inputs are observed (Fig. 6c).
Lastly, the predictive-coverage plot (Fig. C7f) shows good
alignment between the model’s predictive intervals and the
expected outputs for the year 2300. We analyzed years other
than 2300 to assess the PCA GP emulator’s performance, but
we do not include these figures because, relative to the as-
sessment for the year 2300, performance improves closer to
the start of the time series. Finally, patterns similar to those
described for SSP5 are evident in the CTRL and SSP1 pro-
jection ensembles, and the predictive coverage for these sce-
narios is summarized in Fig. C7d and e.

Once the principal component emulators have been val-
idated, we retrain them using the entire ensemble to pro-
vide probabilistic projections of future sea-level contribu-
tions from the AmIS catchment. We propagate the MALI
parameter posterior samples through the GP emulators and
generate samples from the emulator’s predictive distribution
for each of the K = 5 principal components. Finally, we re-
construct the sea-level contribution time series predictions
from the principal components, following steps detailed in
Appendix B2.

3.6 Sensitivity analysis of MALI parameters

We perform a sensitivity analysis of MALI parameters to as-
sess the individual parameter uncertainty contribution to sea-
level contribution uncertainty for the year 2300. Specifically,
we employ Sobol’s global sensitivity analysis (Sobol’, 2001),
which decomposes the variance of the sea-level contribution
into components attributable to individual input parameters
and their interaction effects (i.e., the combined influence of
two or more input parameters) for the joint prior distribution.
This method requires that the input parameters be indepen-
dent of each other, a condition satisfied by our joint prior.
This approach allows for the systematic quantification of the
impact of uncertainty in each input on the output, providing
a comprehensive understanding of the primary uncertainty
sources. Sobol’s method calculates sensitivity indices that
measure the contributions of the MALI parameters, includ-
ing their higher-order interactions with other parameters, to
the overall sea-level contribution uncertainty. We report both
the first-order Sobol index, which quantifies an input parame-
ter’s direct contribution to variance, and the total-order Sobol
index, which captures both the individual effect of that in-
put and its interactions with all other parameters. First-order
Sobol indices should be less than or equal to total-order in-
dices, and both should be non-negative. However, with finite
samples, numerical errors can result in negative indices or
first-order indices exceeding total-order indices.

Complementing Sobol’s analysis, we also perform a
Shapley sensitivity analysis, as proposed by Štrumbelj and
Kononenko (2014). Based on game theory, this method cal-
culates the contribution of each input parameter using its
Shapley value. A sampling-based algorithm is employed to
approximate these Shapley values, which represent the av-

erage marginal contributions of the inputs across all possible
input combinations. Unlike Sobol’s method, the Shapley sen-
sitivity analysis can handle the observationally constrained
and correlated joint posterior distribution of the MALI pa-
rameters. Specifically, we present Shapley indices for each
input parameter under both the joint posterior and prior dis-
tributions, offering more flexible insights into parameter im-
portance.

We perform the aforementioned sensitivity analysis using
a scalar GP emulator of the change in volume above flotation
(VAF) for the SSP5 projection ensemble in the year 2300
to predict the sea-level contributions with uncertainty (de-
scribed in Sect. 4.2).

4 Results

4.1 Bayesian calibration results

The posterior distributions of MALI parameters, calibrated
to three observational constraints, are presented in Fig. 7.
While most parameters are informed by the observations,
certain observations inform some parameters more than oth-
ers. Calibration using the calving front position (red lines)
leads to posterior distributions that deviate from the prior
distributions for calving yield stress (σmax) and the ice stiff-
ness scaling factor (Cφ). The σmax posterior is symmetric but
is shifted toward lower values compared to the prior, with
decreased variance indicating that values close to the me-
dian have a higher probability. The Cφ posterior is slightly
skewed toward the lower values, with the probability of val-
ues being close to the median slightly increasing. Calibration
using grounding line position (blue lines) leads to posteri-
ors that deviate from the priors for the basal slip exponent
(q), the basal friction scaling factor (Cµ), and the ice-shelf
basal melt rate (m). Specifically, the posterior distributions
for Cµ and m are skewed toward lower values, and the pos-
terior for q is skewed toward higher values. Additionally,
Cµ and m posteriors have narrower high-probability regions
compared to their priors, with values close to the median hav-
ing a higher probability. Calibration using mass change (yel-
low lines) leads to posterior distributions that deviate from
the priors for the basal slip exponent, the basal friction scal-
ing factor, the ice stiffness scaling factor, and the ice-shelf
basal melt rate. The q, Cµ, and Cφ posteriors are skewed
toward lower values, while the posterior for m is skewed to-
ward higher values. Cφ has a narrower posterior distribution
compared to its prior, with values around the median having a
high probability. In all three individual calibrations, the pos-
terior for the ice-shelf melt coefficient (γ0) does not change
noticeably compared to its prior. In summary, each calibra-
tion leads to different posterior distributions for the six MALI
parameters, highlighting the impact and importance of each
observational constraint.
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Figure 6. Analysis of the Gaussian process emulator fit using multivariate PCA (five principal components) for change in volume above
flotation in the SSP5 projection ensemble for the year 2300. Plots are shown for (a) residuals versus fitted values, (b) predicted values versus
actual values, and (c) residuals versus pairwise input parameters.

Figure 7. Posterior distributions of MALI parameters using Bayesian calibration on three observables (calving front position, grounding line
position, and mass change), along with their combined calibration effect. Prior distributions from Table 1 are shown using dashed green lines.
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Next, we detail the effects of simultaneously using all
three observational constraints for calibration. As shown in
Fig. 7 (purple lines), the posteriors for calving yield stress,
the basal friction scaling factor, the ice stiffness scaling fac-
tor, and the ice-shelf basal melt rate deviate from their priors.
For σmax, the combination of the three observables leads to
a narrower posterior, centered in the middle of the sampled
range. For Cµ, the posterior is more skewed toward lower
values and has a narrower high-probability region compared
to the individual calibration corresponding to grounding line
position and mass change. In addition, the Cµ posterior peak
shifts further left than that of each individual calibration,
possibly because combined calibration samples lower values
more frequently than higher ones from the range of possi-
ble values. For Cφ , the combined calibration produces a pos-
terior skewed toward lower values, with a higher peak and
narrower high-probability region compared to individual cal-
ibrations based on calving front position and mass change. In
contrast, them posterior is centered in the middle of the sam-
pled range, suggesting that instances of skewness in oppo-
site directions from calibrations corresponding to grounding
line position and mass change cancel each other out, ampli-
fying the peak value and leading to a narrower distribution.
Similarly, the q posterior is similar to its uncalibrated prior
and shows no skewness, suggesting that instances of skew-
ness in opposite directions from calibrations corresponding
to grounding line position and mass change cancel each other
out. Lastly, as expected, the γ0 posterior does not change no-
ticeably with respect to its prior because all three individual
calibrations leave the posterior for γ0 close to its prior.

4.2 Probabilistic projection of future sea-level
contribution from the Amery Ice Shelf catchment

Using the posterior distributions derived from calibrating
all three observables, we generate 10 000 samples of the
MALI parameters. Using the prior distributions given in Ta-
ble 1, we also generate 10 000 samples of model inputs.
These samples are propagated through the PCA emulator
for the SSP5 projection ensemble, generating the prior- and
posterior-predictive sea-level contribution time series, re-
spectively. Figure 8 summarizes the results. The posterior-
predictive means are slightly larger than the prior-predictive
ones after incorporating all observational constraints. More-
over, the predicted uncertainties in the sea-level contribution,
shown by the 68 % and 95 % credible intervals, are narrower
for the posterior than for the prior, with an increase in the
lower bound of each interval. This underscores the impor-
tance of the Bayesian-calibrated ensemble over the RELX
ensemble in terms of reducing MALI parameter uncertain-
ties and their resulting impact on future sea-level rise uncer-
tainty. Lastly, Fig. 8c shows how random samples from the
posterior distribution of the six input parameters generate fu-
ture sea-level trajectories when passed through the PCA GP
emulator. The 30 trajectories align closely with those actu-

ally simulated in the SSP5 projection ensemble (depicted in
red in Fig. C3).

Next, we propagate the same set of posterior samples
through the PCA emulators for the CTRL and SSP1 pro-
jection ensembles and generate posterior-predictive sea-level
contribution time series. Figure 9 shows a side-by-side com-
parison of probabilistic projections of future sea-level contri-
butions in three scenarios: CTRL, SSP1, and SSP5. First, we
observe a negative drift in the CTRL projection ensemble’s
sea-level contribution because the initial conditions taken
from the end of the RELX ensemble are not fully in equilib-
rium with historical climate conditions. Second, we observe
nearly identical trends in sea-level rise through 2300 in the
SSP1 projection ensemble. Assuming that the drift toward a
negative sea-level contribution is primarily due to an unequi-
librated MALI transient in the control simulation, we can in-
fer a future sea-level contribution of∼ 0 mm SLE in the low-
emission scenario. Lastly, under the high-emission (SSP5)
scenario, the future sea-level contribution is estimated to be
significantly higher than 0 mm SLE compared to both the
control (CTRL) scenario and the low-emission (SSP1) sce-
nario.

Finally, we generate predictions for future sea-level con-
tribution for specific years by emulating the individual-year
VAF change data from the MALI simulation using a scalar
GP emulator. Figures C4, C5, and C6 summarize the scalar
GP emulator validation results using 5-fold cross-validation
for the CTRL, SSP1, and SSP5 projection ensembles, respec-
tively, for the year 2300. In all three cases, there is no strong
pattern in the residuals versus the fitted values. Moreover, the
scalar GP emulator predictions are close to the 1 : 1 line, with
narrow predictive intervals, and no strong patterns in residu-
als corresponding to pairwise inputs are evident. Finally, the
predictive-coverage plots (Fig. C7g–i) show good alignment
of the model’s predictive intervals with expected outcomes
for the year 2300 across all projection ensembles. Once our
scalar GP emulators have been validated, we retrain them us-
ing the entire ensemble for a given year to provide proba-
bilistic projections of future sea-level contributions from the
AmIS catchment for the respective ensemble. We propagate
the MALI parameter posterior samples through the GP emu-
lator and sample from the emulator’s predictive distribution.
By combining these samples, we construct the posterior-
predictive distribution for the future sea-level contribution
for a given year in each projection ensemble.

In Fig. 10a, we plot the posterior-predictive distributions
of future sea-level contributions under the SSP5 emission
scenario for the years 2100, 2150, 2200, 2250, and 2300.
We observe that the sea-level contribution in 2100 and 2150
is negligible, with mean values of −0.7 and 1.6 mm SLE.
However, by 2200, the sea-level contribution is greater than
0 mm SLE, with a mean value of 21 mm SLE, and uncer-
tainties in the distribution are wider. Moreover, in 2250 and
2300, the sea-level contribution is significantly higher than
0 mm SLE, with mean values of 65 and 79 mm SLE, re-
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Figure 8. A total of 10 000 samples, drawn from prior distributions and calibrated posterior distributions of MALI parameters, are propagated
through the PCA emulator for the SSP5 projection ensemble, leading to reconstructed time series for sea-level contributions (millimeters
SLE) for the years 2015–2300. (a, b) The mean and credible intervals at 68 % and 95 % are shown using the prior-predictive (green) and
posterior-predictive (purple) sea-level contribution time series samples, respectively. (c) A combined total of 30 randomly selected samples
from the posterior-predictive distribution. Cred Int: credible interval.

Figure 9. A total of 10 000 samples from the calibrated posterior distributions of MALI parameters are propagated through the principal
component emulators for (a) CTRL, (b) SSP1, and (c) SSP5 projection ensembles, leading to reconstructed time series for sea-level contri-
butions (millimeters SLE) for the years 2015–2300. We plot the mean and credible intervals at 68 % and 95 % using the posterior-predictive
sea-level contribution time series samples. In panel (c), we include the plots for the CTRL (blue) and SSP1 (orange) ensembles to highlight
the differences in sea-level contribution predictions from the SSP5 ensemble.

spectively, while the year 2300 has values that are more
highly skewed than those for the year 2250, suggesting a
greater future sea-level contribution. We also compare these
posterior-predictive distributions with the cross section of
the posterior-predictive time series distributions presented in
Fig. 8 for the years 2200, 2250, and 2300 in Fig. D1. As
PCA involves a lossy compression of data, we switch to
individual-year scalar GP emulators that are more accurate
compared to the cross section of the posterior-predictive time
series distribution for the chosen years. Figure D1 shows
slight differences between the posterior-predictive distribu-
tions for the chosen years generated by the PCA and the
scalar GP emulators. However, in the year 2200, there is a
noticeable shift in the peak, which is expected since, as ob-
served in Fig. C3, most of the sea-level contribution time se-
ries exhibit sudden change between the years 2150 and 2200.
Next, Fig. 10b compares the prior- and posterior-predictive
distributions for future sea-level contributions in the years
2200 and 2300. The posterior-predictive means are 21 and
79 mm SLE, which are higher than the prior-predictive means
of 8 and 59 mm SLE for those years. The 95 % credi-
ble interval (c.i.) of the posterior-predictive distribution is

[−9.6,75]mm SLE for the year 2200 and [46,133]mm SLE
for the year 2300. In contrast, the prior-predictive 95 % cred-
ible intervals are [−31,70]mm SLE and [19,123]mm SLE
for the same years. This demonstrates that both the means
and bounds of the 95 % intervals increase, while the inter-
vals themselves shrink, indicating lower predictive uncertain-
ties in future sea-level projections due to observational con-
straints for both years. Lastly, Fig. 10c presents the posterior-
predictive distributions of future sea-level contributions in
the year 2300 for the CTRL, SSP1, and SSP5 projection
ensembles. The posterior-predictive mean and 95 % c.i. for
the SSP1 ensemble are −5.5 and [−15,4]mm SLE, which
are quite similar to those for the CTRL projection ensem-
ble (−7.7 and [−15,0.3]mm SLE). In contrast, the posterior-
predictive distribution for the SSP5 scenario indicates a sig-
nificantly higher sea-level contribution in the year 2300, with
a mean of 79 and a 95 % c.i. of [46,133]mm SLE. This high-
lights a major sea-level contribution under the SSP5 scenario
compared to the CTRL and SSP1 scenarios.
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Figure 10. Posterior-predictive distributions for the future sea-level contributions for representative years. (a) Posterior-predictive distribu-
tions of future sea-level contributions for the SSP5 scenario in the years 2100, 2150, 2200, 2250, and 2300. We zoom in on the posterior-
predictive distributions of the SLE in 2200, 2250, and 2300 to highlight their trends. (b) Prior-predictive distributions (dashed lines) compared
with corresponding posterior-predictive distributions for future sea-level contributions for the SSP5 scenario in 2200 and 2300. (c) Posterior-
predictive distributions of future sea-level contributions for the year 2300, corresponding to CTRL, SSP1, and SSP5 projection ensembles.

4.3 Individual contributions of MALI parameters to
sea-level contribution uncertainty

The results of the sensitivity analysis for the SSP5 projec-
tion ensemble with respect to the year 2300 include the first-
order and total-order Sobol indices for the MALI parameters
shown in Fig. 11a. We observe that uncertainties in the basal
slip exponent (q), basal friction scaling factor (Cµ), ice stiff-
ness scaling factor (Cφ), and ice-shelf melt exponent (γ0)
make nontrivial contributions to sea-level contribution un-
certainty, listed in descending order. Uncertainties in calving
yield stress (σmax) and the ice-shelf basal melt rate (m) have
negligible contributions.

In contrast, Fig. 11b presents the sensitivity of MALI pa-
rameters using the observationally constrained and correlated
joint posterior with Shapley indices. We observe that uncer-
tainties in q, Cµ, Cφ , and γ0 significantly impact sea-level
contribution uncertainties in descending order, while the re-
maining two parameters have negligible effects. Compared
to the Shapley indices computed from the joint prior distri-
bution (also in Fig. 11b), Bayesian calibration increases the
influence of q while reducing the impact of Cφ on sea-level
contribution uncertainty.

The aforementioned analysis reveals several key findings.
First, despite being significantly constrained by Bayesian
calibration, the σmax parameter does not affect the sea-level
contribution of the ice sheet. In contrast, the q parameter,
which was not constrained by the calibration, has the largest
effect. To illustrate this, Fig. 12 shows mean sea-level con-
tribution predictions, with 68 % and 95 % credible intervals
as a function of the MALI parameters. These intervals are
estimated by varying each input parameter and sampling the
remaining inputs from their joint prior distribution, condi-
tional on the parameter being varied. The samples are propa-
gated through our scalar GP emulator for VAF change in the
year 2300 under the SSP5 scenario. We find that higher val-
ues of q result in lower sea-level contributions with tighter
uncertainty bounds, while lower values lead to higher con-

tributions with wider uncertainty. Similar trends are seen for
Cµ. For Cφ , higher values reduce the sea-level contribution,
but uncertainty remains consistent across its range. In con-
trast, for γ0, lower values reduce the sea-level contribution,
while higher values slightly increase both the sea-level con-
tribution and its uncertainty bounds. Varying σmax and m has
a negligible impact on sea-level contribution. These findings
align with the results from the Sobol and Shapley analyses. It
is notable that the three parameters for which sea-level con-
tribution in the year 2300 under the SSP5 scenario is gen-
erally insensitive – σmax, γ0, and m – all affect the ice-shelf
volume and do not directly impact grounded ice. The drastic
ocean temperature increase in the 22nd century (Fig. 2) leads
to rapid removal of the ice shelf in most of our simulations,
after which point parameters specific to ice-shelf processes
do not affect the subsequent evolution of the glacier system.

5 Discussion

5.1 Comparison to previous projections of the Amery
Ice Shelf system

Previous modeling studies of Antarctica’s AmIS sector sug-
gest that the catchment is stable under a range of likely fu-
ture climate scenarios, with grounded-ice mass loss occur-
ring only with near-complete loss of the ice shelf (Gong et
al., 2014; Pittard et al., 2017). Barring ice-shelf removal,
increases in surface mass balance (via increased accumu-
lation in a warmer climate) may outweigh any accelera-
tion in ice discharge caused by reduced ice-shelf buttress-
ing. For scenarios where the AmIS remains intact, Gong et
al. (2014) project a mass change of 0 to −15 mm SLE in the
year 2200, while Pittard et al. (2017) project a mass change
of −43 to 32 mm SLE (with positive values indicating sea-
level rise). Given the differences in forcing scenarios and
model configurations, our 95 % c.i. for sea-level contribution
in the SSP1 ensemble (where the AmIS remains intact) is
[−8.2,4.2]mm SLE for the year 2200, with a −2.1 mm SLE
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Figure 11. Individual MALI parameter uncertainty contribution to the future sea-level contribution uncertainty for the year 2300, using a
scalar GP emulator of VAF change for the SSP5 projection ensemble. (a) Sobol’s global sensitivity analysis on the joint prior. We present
first-order and total-order Sobol indices for the MALI parameters. (b) Shapley sensitivity analysis on the joint posterior and prior.

Figure 12. The effect of individual MALI input parameters on sea-level contribution (millimeters SLE), with uncertainty bounds for the year
2300, using a scalar GP emulator of VAF change for the SSP5 projection ensemble.

mean value, consistent with these earlier findings. We also
point out that the 95 % c.i. for the SLE in the year 2200 in
the CTRL ensemble is [−9,1.5]mm SLE, where the mean
SLE of −3.8 mm SLE evolves from an expected mean of
0 mm SLE, likely as a result of model drift. Accounting for
this drift in the CTRL ensemble, our SSP1 ensemble results
suggest that, on average, we may not expect to see any signif-
icant changes in SLE as a result of future AmIS sector evolu-
tion. We attribute the narrower projection range in our study

to the consideration of a single, intact AmIS scenario and, to
a lesser extent, to the observationally constrained calibration.

While these previous studies identify an increase in snow-
fall accumulation causing surface mass balance to rise, this
effect is modest for the UKESM SSP1 atmospheric forc-
ing used here, which yields a 14 % cumulative increase in
surface mass balance by the year 2300 (relative to histori-
cal conditions (Fig. 2b)). Furthermore, in our simulations,
ice discharge increases in the SSP1 scenario, more than off-
setting the small uptick in accumulation. Consequently, our
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SSP1 ensemble contributes slightly more to sea-level rise
than the CTRL ensemble (Fig. 9). Intermediate levels of cli-
mate warming are more likely to lead to increased accumu-
lation, driving overall mass gain in the catchment (Pittard et
al., 2017), but we have not evaluated such scenarios.

The SSP5 scenario applied here includes a sudden and sus-
tained major increase in melting beneath the AmIS, lead-
ing to the elimination of the ice shelf around 2130. This is
caused by a sustained increase in mean thermal forcing that
is not counterbalanced by the modest rise in surface mass
balance (Fig. 2). Accordingly, the rapid mass loss in the
second half of these simulations is depicted in Fig. 8. The
95 % c.i. for our calibrated posterior distribution is predicted
to be [46,133]mm SLE during the final 170 years after the
AmIS collapse. For scenarios where the AmIS is suddenly
eliminated, Gong et al. (2014) predict up to 11 mm SLE
in 200 years, whereas Pittard et al. (2017) forecast about
150 mm SLE after 170 years. It is important to note that these
previous studies view the elimination of the AmIS as extreme
and unlikely, whereas, in our simulations, it occurs as a con-
sequence of state-of-the-art climate forcing and melt param-
eterizations (discussed further in Sect. 5.2).

Pittard et al. (2017) attribute the differences in sea-level
contribution between their extreme scenario and that of Gong
et al. (2014) to different bedrock topography datasets. The
ALBMAP dataset (Le Brocq et al., 2010) used by Gong et al.
(2014) includes a spurious ridge near the present-day ground-
ing line, and the Bedmap2 dataset (Fretwell et al., 2013) used
by Pittard et al. (2017) requires modification to deepen the
bedrock near the grounding line by 500 m for consistency
with oceanographic observations beneath the ice shelf. The
BedMachine dataset, released after these studies, includes a
trough along the Mellor Glacier that is up to 2000 m deeper
than that in Bedmap2 (Morlighem et al., 2020; Morlighem,
2022) and is consistent with the modifications of Pittard et
al. (2017). Thus, the consistency of our results with Pittard et
al. (2017) and the differences relative to Gong et al. (2014)
appear to be due largely to the representation of the bed to-
pography. Similarly, Gong et al. (2014) report grounding line
stabilization within 200 years of the ice-shelf removal, likely
due to the relatively shallow bedrock topography. However,
we see sustained grounding line retreat through the end of
our simulations.

5.2 Ice-shelf collapse and the response of grounded ice

Our results support previous studies that conclude that sub-
stantial mass loss from the AmIS system is possible once the
ice shelf is removed. However, while Pittard et al. (2017) pre-
dict that the ice shelf will remain intact for the next 500 years,
we show it melting away within ∼ 130 years when forced by
a state-of-the-art Earth system model under a high-emission
scenario. While the UKESM SSP5 ocean forcing is the
strongest of the forcings provided by ISMIP6, the other three
Earth system models simulating the extended high-emission

scenario agree that there will be a strong influx of mCDW
within the next few centuries. Meanwhile, surface mass bal-
ance exhibits, at most, a modest increase (Fig. 2), unlikely to
offset increased ice discharge resulting from substantial ice-
shelf thinning and retreat. The mean UKESM thermal forc-
ing of ∼ 3.5 °C, which causes ice-shelf loss in the 2130s, is
reached under the three other high-emission scenarios (SSP5
and RCP8.5; Fig. 2). As significant ocean warming near the
AmIS appears to be a robust feature of Coupled Model Inter-
comparison Project Phase 5 (CMIP5) and CMIP6 models for
high-emission scenarios, we expect that calibrated simula-
tions of the AmIS forced by any of these models will predict
a significant contribution to sea levels by 2300. Furthermore,
we include the potential impact of surface-melt-driven hy-
drofracture of the ice shelf (Scambos et al., 2009), which, if
included, likely will accelerate the ice shelf’s demise. Three
of the four hydrofracture forcing maps provided by ISMIP6-
AIS-2300 for SSP5 and RCP8.5 predict the removal of the
AmIS via hydrofracture between 2100 and 2200. While this
process is highly uncertain and currently can only be crudely
parameterized in ice-sheet models, it represents another po-
tential threat to the AmIS’s integrity.

While our projections following ice-shelf removal in the
SSP5 ensemble are consistent with the extreme scenario pro-
jections in Pittard et al. (2017), there is deep uncertainty
about calving processes following the ice-shelf loss. This
stems from the lack of observations against which models
can be calibrated and from the poorly understood physics
(Pollard et al., 2015). As described in Sect. 2.1, we have dis-
abled calving at grounded marine termini because no such
termini exist for this glacier system under historical condi-
tions, preventing the possibility of calibrating associated pa-
rameters. To explore the impact of this modeling choice on
a typical ensemble member, we perform sensitivity experi-
ments, enabling calving at grounded marine termini.

To select a typical run, we first identify the ensemble mem-
bers from the filtered SSP5 projection ensemble with mass
change in the year 2300 between the 40th and 60th per-
centiles. From this subset, we identify one run with parame-
ter values for the calving yield stress (125 158 Pa), basal slip
exponent (0.2245), basal friction scaling factor (0.9602), and
ice stiffness scaling factor (0.9601), all of which are close
to the means of the respective posterior distributions. In the
year 2300, this run has a mass change of 77 mm SLE, which
is close to the mean of the sea-level contribution’s posterior-
predictive distribution for the year 2300, at 79 mm SLE
(Fig. 10a). Using this set of parameter values, we conduct
additional SSP5 simulations, with the calving yield stress for
grounded marine termini set to 1000 kPa, a typical value used
for the tensile strength of ice (Petrovic, 2003; Morlighem et
al., 2016; Ultee et al., 2020), and a more aggressive threshold
set to the value used for floating ice (125 kPa).

Including grounded calving with a threshold stress of
1000 kPa leads to a slightly faster mass loss after the removal
of the AmIS, but the glacier mass stabilizes at about the
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same value as when grounded calving is ignored (Fig. 13a).
However, using the same 125 kPa threshold stress as that for
floating ice leads to a 10-fold increase in mass loss, yield-
ing nearly 1 m SLE by the year 2300. This behavior is analo-
gous to that of marine ice cliff instability (Bassis and Walker,
2012; Pollard et al., 2015; DeConto and Pollard, 2016). As
implemented by Pollard et al. (2015) and DeConto and Pol-
lard (2016), marine ice cliff instability is a calving rate that
is a function of ice cliff height above the water line. Here,
the analogous behavior comes from the calving rate being a
direct function of effective tensile stress. The effect is similar
in that large effective tensile stress yields large calving rates
and grounded margin retreat, which, in turn, leads to larger
effective tensile stresses and faster retreat when the margin
withdraws into deeper bedrock (Fig. 13b and c) because the
effective tensile stress is strongly affected by subaerial cliff
height. The margin retreat and mass loss seen here, with a
grounded threshold stress of 125 kPa, are roughly similar to
those shown by DeConto and Pollard (2016) for the same
region.

The inability to calibrate the calving yield stress for
grounded marine margins complicates future projections
for the glacier system under this configuration. The tensile
strength of ice has been estimated to be on the order of
1 MPa (Bassis and Walker, 2012; Ultee et al., 2020). The
fact that our calibrated value for floating ice (125 kPa) is so
much lower may represent unresolved damage and crevass-
ing (Bassis and Ma, 2015; Lhermitte et al., 2020; Kachuck et
al., 2022) in our model, which would lead to a yield strength
lower than that of intact ice. In this case, a higher thresh-
old stress would be more appropriate for grounded ice than
for floating ice because the former is typically less dam-
aged than the latter (Bassis and Ma, 2015; Kachuck et al.,
2022). The inability to calibrate this parameter implies an es-
pecially large uncertainty with respect to the representation
of grounded-ice calving in models. Notably, until relevant di-
rect observations or improved prior understanding become
available, this uncertainty will continue to limit the utility of
Bayesian inference for quantifying the uncertainty in future
sea-level rise from Antarctica.

5.3 Quantification of parametric uncertainty

A notable result of our Bayesian calibration is that the ob-
servables constrain both the MALI parameters (Fig. 7) and
the projections of the MALI model, as observed by compar-
ing the posterior- and prior-predictive distributions of future
sea-level contributions (Figs. 8 and 10b). Combining three
observational constraints leads to calibrated posteriors for the
calving yield stress, basal friction scaling factor, ice stiffness
scaling factor, and ice-shelf basal melt rate, which differ from
their uncalibrated priors, whereas the posteriors for the basal
slip exponent and the ice-shelf basal melt rate remain simi-
lar to their priors (Fig. 7). Consequently, when the posterior
samples of the MALI parameters are propagated through the

scalar GP emulator of the SSP5 projection ensemble for the
year 2300, they yield a posterior-predictive distribution of fu-
ture sea-level contribution, with a higher mean of 79 mm SLE
(Fig. 10b). In contrast, prior samples of the MALI parame-
ters result in a prior-predictive distribution with a mean of
59 mm SLE for the same year. Moreover, the 95 % credi-
ble intervals for the posterior- and prior-predictive distribu-
tions are [46,133] and [19,123]mm SLE, respectively, for
the year 2300. This highlights that both the mean and the
bounds of the credible interval have increased, while the in-
terval itself has reduced in size for the posterior-predictive
distribution. This indicates lower predictive uncertainties in
future sea-level projections due to the calibrated MALI pa-
rameter samples. These observations underscore the impor-
tance of Bayesian calibration of MALI parameters in con-
straining and quantifying the future sea-level contribution
uncertainties. Potential avenues for reducing uncertainty in-
clude (1) collecting new observations with reduced uncer-
tainty, (2) evaluating additional observations (either our ex-
isting scalar metrics or additional metrics) at multiple time
epochs, or (3) adding new scalar or spatially resolved quan-
tities of interest. Applying Bayesian calibration to the rel-
atively stable AmIS system, with effectively a single time
point of observation, limits the amount of information that
it can provide as scant information about the dynamical re-
sponse to external perturbations is included in the calibration.
The deep uncertainty associated with calving at grounded
marine margins is an extreme case of the lack of observations
– observations relevant to the key processes must exist to de-
rive full benefit from the calibration. Incorporating paleodata
(Gilford et al., 2020) or additional locations where these pro-
cesses operate under historical conditions affords additional
paths forward.

5.4 Model limitations and future work

There are a number of potential improvements to be made to
the ice-sheet model configuration used here. The 4 km res-
olution used near the grounding line is likely too coarse to
fully resolve grounding line dynamics (Gong et al., 2014;
Hoffman et al., 2018). This resolution is a computational re-
quirement for running a large enough ensemble to support
the generation of emulators. Similarly, the model spin-up
procedure results in model drift of up to about −10 mm SLE
(Fig. 9a). Conducting multi-millennia spin-ups for each en-
semble member (e.g., Berdahl et al., 2023) or improv-
ing model initialization techniques to minimize drift (e.g.,
Perego et al., 2014) would reduce this issue. We note that
both approaches introduce other complications through in-
creased simulation costs and additional differences in the ini-
tial state between ensemble members.

There are also improvements to be made to the physical-
process representations in the model. Although the von
Mises stress calving law employed performs well when sim-
ulating a stable AmIS calving front (Wilner et al., 2023), it

The Cryosphere, 18, 5207–5238, 2024 https://doi.org/10.5194/tc-18-5207-2024



S. Jantre et al.: Parametric-uncertainty quantification study of the Amery Ice Shelf 5225

Figure 13. Sensitivity to the treatment of grounded calving. (a) Sea-level contribution when no grounded calving is assumed (dashed blue
line), as in the primary results, using a typical value for the tensile strength of grounded ice (σmax = 1000 kPa; orange) and a value for the
tensile strength of ice close to the maximum a posteriori value for floating ice in our calibrated ensemble (σmax = 125 kPa; green). (b) Model
state in the year 2300 when using σmax = 1000 kPa. The white line indicates the initial calving front, and the black line represents the initial
grounding line. Red contours indicate where the bed topography is at sea level. Cyan shading indicates ice-free-ocean portions of the domain.
There is effectively no floating ice. (c) Model state in the year 2300 when using σmax = 125 kPa, as in panel (b).

cannot reproduce the historical cycles of calving front re-
treat and advance (Fricker et al., 2002; Greene et al., 2022;
Andreasen et al., 2023). More sophisticated methods that
can reproduce these cycles have yet to be implemented in
large-scale ice-sheet models, but this is an area of active
research (Bassis et al., 2024). The assumption of a time-
invariant friction coefficient is also a limitation that requires
the implementation of new process models to be resolved.
We also neglect glacial isostatic adjustment, which can have
strong feedbacks with marine ice-sheet evolution (Gomez
et al., 2010) but likely has relatively minor impacts on the
timescales considered here and in this region, where man-
tle viscosity is high (Whitehouse et al., 2019; Coulon et
al., 2021). While we present probabilistic projections, we
only consider two climate scenarios, and the climate sce-
nario uncertainty is far larger than the parametric uncertainty
being considered. Our use of a single Earth system model
for climate forcing also presents a limitation necessitated by
computational expense. For a given SSP, there is large un-
certainty in ice-sheet model projections when applying cli-
mate forcing from different climate models (Seroussi et al.,
2020, 2023, 2024).

5.5 Limitations and potential improvements for
uncertainty quantification methods

Any data–model comparison is limited by the number and
dimension of both input uncertainties and output data con-
straints. This study considers only six scalar inputs as uncer-
tain variables to be estimated. We judge these to be influen-
tial based on domain expertise, but the model contains other
parameters whose values are not known. In particular, the ice
stiffness and basal friction scaling factors are a highly simpli-
fied means of representing uncertainties in what are actually
two-dimensional spatial fields. Uncertainty quantification of

high-dimensional field data is an open mathematical research
challenge (Isaac et al., 2015; Petra et al., 2014; Brinkerhoff,
2022; Hartland et al., 2023; Riel and Minchew, 2023; Reese
et al., 2024), often resorting to Gaussian posterior approxi-
mations or other approximations to accommodate the com-
putational expenses. Another open technical question is how
to combine such approximate methods with the fully non-
Gaussian, asymptotically convergent Markov chain Monte
Carlo methods used here for parameter estimation.

An additional limitation of this work is its reliance on
scalar, temporally and spatially averaged observational con-
straints. We observe that the basal slip exponent (q) and the
ice-shelf melt coefficient (γ0) are largely unconstrained by
Bayesian calibration, which suggests that our observational
metrics are not informative about these parameters. This may
be a result of over-averaging data in space and time, which
can remove information. We could consider space- and time-
resolved data (where available), although this would intro-
duce additional complexities into modeling the data–model
residual space–time covariance structure. This structure is
likely intricate, and statistical misspecification of the model
discrepancy (error) can bias inference. Calibration against
multivariate data using a dimensionally reduced principal
component emulator also can introduce bias (Salter et al.,
2019; Salter and Williamson, 2022). We could also consider
including additional observational constraints. Felikson et al.
(2023) demonstrate that the choice of observable can sig-
nificantly impact the projections of ice-sheet mass change.
Finally, a more sophisticated treatment of multiple observa-
tional constraints will require careful treatment of the statis-
tical covariance between observables (or, rather, between the
model errors for different observables).

https://doi.org/10.5194/tc-18-5207-2024 The Cryosphere, 18, 5207–5238, 2024



5226 S. Jantre et al.: Parametric-uncertainty quantification study of the Amery Ice Shelf

6 Conclusion

This study provides a comprehensive analysis of the future
sea-level contribution from the AmIS catchment with quan-
tified uncertainties. Three different observables – mass bal-
ance, grounding line movement, and calving front movement
– are chosen to effectively calibrate the input parameters to
the MALI ice-sheet model. Statistical emulation using GPs
is used to significantly reduce the computational burden of
performing Bayesian calibration and uncertainty propaga-
tion. Each observable leads to individual Bayesian calibra-
tions of the MALI parameters using their expert-knowledge-
based priors, resulting in posterior distributions. Next, we
combine the effects of these three observables to effectively
capture the final calibrated posterior distributions of MALI
parameters. The combined calibration helps us constrain the
calving yield stress, basal friction scaling factor, ice stiff-
ness scaling factor, and ice-shelf basal melt rate parameters,
while the basal slip exponent and ice-shelf basal melt rate
remain unconstrained. The calibrated posteriors and their re-
spective priors are used to sample the MALI parameters in
order to propagate them through the multivariate principal
component emulator to obtain posterior- and prior-predictive
distributions of future sea-level contributions from the AmIS
under two different emission scenarios.

Using the SSP5 high-emission scenario to highlight
changes in this relatively stable glacier, our expert prior over
the MALI parameters, when propagated through our scalar
GP emulator, projects a mean SLE of 59 mm SLE with a
95 % c.i. of [19,123]mm in the year 2300. After constraining
the MALI model parameters with observations, this projec-
tion changes to a mean SLE of 79 mm SLE with a 95 % c.i.
of [46,133]mm. Both the mean and the bounds of the 95 %
interval increase, while the interval itself shrinks, indicating
lower predictive uncertainties in future sea-level projections
due to observational constraints. The reduction in future sea-
level contribution uncertainties is modest due to the limited
quantity of observations and their inherent uncertainties with
regard to the glacial system. In addition, because this system
is close to equilibrium, the dynamical constraints on retreat
are weak. While the reduced complexity resulting from the
AmIS catchment being close to equilibrium makes this a rel-
atively straightforward application of the methodology, ap-
plying it to other, more dynamic glacier systems, such as the
Thwaites or Totten glaciers, could potentially lead to better-
informed projections. We have developed a framework pro-
viding an end-to-end probabilistic modeling workflow, con-
sisting of Bayesian calibration and uncertainty propagation,
together with Gaussian process emulation, for similar stud-
ies that can be undertaken in the glaciological community
and beyond.

While Bayesian calibration is expected to be more infor-
mative for situations with a larger range of observed behav-
iors, our calibrated projections allow for assessing how para-
metric uncertainty affects the projected ice-sheet response
to abrupt changes in oceanic forcing. The high- and low-
greenhouse-gas-emission scenarios yield similar projections
of glacier mass change for the 21st century. After abrupt
ocean warming and elimination of the AmIS through basal
melting, the difference between the scenarios becomes statis-
tically significant within decades, far exceeding the paramet-
ric uncertainty in the year 2300. The results align with pre-
vious projections of the AmIS catchment, indicating stability
with minimal contribution to sea-level change unless large
changes in ocean temperature occur, leading to substantial
sea-level rise. What has changed since previous studies of the
AmIS system were conducted is the subsequent generation of
Coupled Model Intercomparison Project (CMIP) model pro-
jections, extending to 2300, which predict significant ocean
warming under high-greenhouse-gas-emission scenarios that
were previously considered unlikely. Our study uses these
newer climate projections while quantifying parametric un-
certainty, allowing for evaluating the significance of differ-
ences between projections of the AmIS catchment under
these climate scenarios. Major remaining uncertainties in-
clude the processes of calving and marine melting that oc-
cur once the ice shelf is removed. Feedbacks between stress
state and calving at marine cliffs potentially can lead to mass
loss that is 10 times larger than that of our primary ensem-
ble, leaving a deeply uncertain long tail for future projec-
tions. Reducing this deep uncertainty will require applying
uncertainty quantification methods to locations where these
processes have been observed over a diverse range of behav-
iors and gaining a fundamental understanding of calving pro-
cesses to confidently transfer this knowledge to places like
the AmIS, where such events have not yet occurred.
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Appendix A: Input parameters

Figure A1. Input parameter values for 200 MALI simulations generated by a Sobol sequence.
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Appendix B: PCA emulator details

B1 Principal component analysis dimensionality
reduction steps

This appendix presents the detailed steps for the dimension-
ality reduction of time series data using principal component
analysis (PCA). We begin with a T ×N time series data ma-
trix, denoted by S, and extract a reducedK-dimensional prin-
cipal subspace (Z1), which has uncorrelated rows, using the
linear transformation matrix P1, consisting of K eigenvec-
tors corresponding to top K eigenvalues. We use the follow-
ing steps:

1. Compute the vector (µ) of row means of the data matrix
S. Center S by subtracting µ from each column to get
Sc.

2. Find the singular value decomposition of Sc,

Sc = U3V
T ,

where U is a T × T orthogonal matrix of the left-
singular vectors of Sc. V is an N×N orthogonal matrix
containing the right-singular vectors of Sc.3 is a T ×N
diagonal matrix containing singular values arranged in
descending order, and large singular values correspond
to the important feature directions in Sc (Shlens, 2014).

3. Let P = UT ; then, we see that

PSc = U
T Sc =3V

T
= Z.

The rows of P represent the principal components (PCs)
of Sc. Z represents the fully transformed data matrix (or
full principal subspace) using all of the PCs.

4. Choose the dimensionality of the reduced principal sub-
space and denote it by K , where K <T . Let P1 consist
of the first K principal components. Then, P1 forms the
orthonormal basis for the reduced principal subspace.
Next, project Sc onto the reduced principal subspace us-
ing the K × T transformation matrix P1 as follows:

P1Sc = Z1,

where Z1 represents the reduced-dimensional K ×N
transformed data matrix.

B2 PCA emulator predictive-mean and variance
construction

We present the steps for the reconstruction of the mean and
variance of the time series predictions fromK emulated PCs.
First, we back-transform Ẑ1, the predictive means of the
Gaussian process (GP) emulators of K PCs stacked together
row-wise, as follows:

Ŝc = P1
T Ẑ1.

Then, we decentralize Ŝc by adding row means (µ) of the
data matrix S to obtain the T ×N matrix Ŝ, which represents
the mean of the time series predictions. Next, we reconstruct
the variance by first reconstructing the entire covariance ma-
trix of each time series prediction as follows:

Ct = P1
T diag

(
σ 2

1,t , · · ·,σ
2
K,t

)
P1,

where Ct represents the covariance matrix for the t th time se-
ries prediction and the diagonal entries are variances. Next,
we concatenate individual time series variance predictions
row-wise to get the T ×N matrix 6. We use 6 to evaluate
credible intervals around the mean predictions (Ŝ).
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Appendix C: Emulator validation continued

Figure C1. Analysis of the multivariate PCA GP emulator fit (using five principal components) for the change in volume above flotation in
the CTRL projection ensemble for the year 2300. Shown are plots for (a) residuals versus fitted values, (b) predicted values versus actual
values, and (c) residuals versus pairwise input parameters.

Figure C2. Analysis of the multivariate PCA GP emulator fit (using five principal components) for change in volume above flotation in the
SSP1 projection ensemble for the year 2300. Shown are plots for (a) residuals versus fitted values, (b) predicted values versus actual values,
and (c) residuals versus pairwise input parameters.
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Figure C3. Multivariate PCA GP emulator predictions (using five principal components) during 5-fold cross-validation, compared with
actual data for sea-level contributions (in millimeters) until the year 2300.

Figure C4. Analysis of the scalar GP emulator fit for change in volume above flotation in the CTRL projection ensemble for the year
2300. Shown are plots for (a) residuals versus fitted values, (b) predicted values versus actual values, and (c) residuals versus pairwise input
parameters.
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Figure C5. Analysis of the scalar GP emulator fit for change in volume above flotation in the SSP1 projection ensemble for the year 2300.
Shown are plots for (a) residuals versus fitted values, (b) predicted values versus actual values, and (c) residuals versus pairwise input
parameters.

Figure C6. Analysis of the scalar GP emulator fit for change in volume above flotation in the SSP5 projection ensemble for the year 2300.
Shown are plots for (a) residuals versus fitted values, (b) predicted values versus actual values, and (c) residuals versus pairwise input
parameters.

https://doi.org/10.5194/tc-18-5207-2024 The Cryosphere, 18, 5207–5238, 2024



5232 S. Jantre et al.: Parametric-uncertainty quantification study of the Amery Ice Shelf

Figure C7. Gaussian process emulator predictive-coverage results for (a) calving front position, (b) grounding line position, (c) mass change,
(d) the PCA emulator in the CTRL ensemble, (e) the PCA emulator in the SSP1 ensemble, (f) the PCA emulator in the SSP5 ensemble, (g) the
scalar emulator in the CTRL ensemble, (h) the scalar emulator in the SSP1 ensemble, and (i) the scalar emulator in the SSP5 ensemble. The
ideal interval, denoted by the dashed green line in each panel, represents the case of perfect confidence. In each panel, overconfidence is
represented by the red shaded region, while underconfidence is represented by the blue shaded region. In panels (a)–(c), emulators are applied
to the RELX ensemble. In panels (d)–(i), emulators are for changes in volume above flotation for the year 2300.
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Appendix D: Comparison between predictions using
PCA and scalar Gaussian process emulators

Figure D1. Comparison of posterior-predictive distributions of fu-
ture sea-level contributions for the SSP5 scenario in the years 2200,
2250, and 2300, obtained using principal component analysis Gaus-
sian process (GP) emulators versus scalar GP emulators fitted to
individual-year data from the VAF change projections.

Code and data availability. Code and data are available on Zenodo
via https://doi.org/10.5281/zenodo.11166628 (Jantre et al., 2024).

Author contributions. MJH, TH, SP, and MP designed the experi-
ments, with input and advice from SJ, JDJ, and NMU. TH and MJH
staged and ran the experiments. SJ ran all the statistical analyses,
with input from NMU and JDJ. SJ and MJH prepared the paper,
with contributions from all the co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the US
Department of Energy or the United States Government.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue “Im-
proving the contribution of land cryosphere to sea level rise projec-

tions (TC/GMD/NHESS/OS inter-journal SI)”. It is not associated
with a conference.

Acknowledgements. Support for Sanket Jantre, Matthew J. Hoff-
man, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen
Price, and John D. Jakeman was provided through the Scien-
tific Discovery through Advanced Computing (SciDAC) program,
funded by the US Department of Energy (DOE) Office of Science’s
Advanced Scientific Computing Research and Biological and En-
vironmental Research programs. Simulations were performed on
machines at the National Energy Research Scientific Computing
Center (a DOE Office of Science user facility located at Lawrence
Berkeley National Laboratory), operated under contract no. DE-
AC02-05CH11231, using NERSC award nos. ERCAP0023782 and
ERCAP0024081. Brookhaven National Laboratory is supported by
the DOE Office of Science under contract no. DE-SC0012704. Los
Alamos National Laboratory is operated by Triad National Security,
LLC, for the National Nuclear Security Administration of the US
Department of Energy under contract no. 89233218NCA000001.
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell Interna-
tional Inc., for the DOE’s National Nuclear Security Administra-
tion under contract no. DE-NA-0003525. The authors thank Jeremy
Bassis for discussions about the calibration of modeled calving.

Financial support. This research has been supported by the Scien-
tific Discovery through Advanced Computing (SciDAC) program,
funded by the US Department of Energy (DOE) Office of Science’s
Advanced Scientific Computing Research and Biological and Envi-
ronmental Research programs.

Review statement. This paper was edited by Alexander Robinson
and reviewed by two anonymous referees.

References

Alevropoulos-Borrill, A. V., Nias, I. J., Payne, A. J., Golledge, N.
R., and Bingham, R. J.: Ocean-forced evolution of the Amundsen
Sea catchment, West Antarctica, by 2100, The Cryosphere, 14,
1245–1258, https://doi.org/10.5194/tc-14-1245-2020, 2020.

Andreasen, J. R., Hogg, A. E., and Selley, H. L.: Change in Antarc-
tic ice shelf area from 2009 to 2019, The Cryosphere, 17, 2059–
2072, https://doi.org/10.5194/tc-17-2059-2023, 2023.

Aschwanden, A. and Brinkerhoff, D. J.: Calibrated Mass Loss Pre-
dictions for the Greenland Ice Sheet, Geophys. Res. Lett., 49,
e2022GL099058, https://doi.org/10.1029/2022GL099058, 2022.

Bassis, J. and Ma, Y.: Evolution of Basal Crevasses Links Ice Shelf
Stability to Ocean Forcing, Earth Planet. Sc. Lett., 409, 203–211,
https://doi.org/10.1016/j.epsl.2014.11.003, 2015.

Bassis, J. and Walker, C.: Upper and Lower Limits on the
Stability of Calving Glaciers from the Yield Strength En-
velope of Ice, P. Roy. Soc. A-Math. Phy., 468, 913–931,
https://doi.org/10.1098/rspa.2011.0422, 2012.

https://doi.org/10.5194/tc-18-5207-2024 The Cryosphere, 18, 5207–5238, 2024

https://doi.org/10.5281/zenodo.11166628
https://doi.org/10.5194/tc-14-1245-2020
https://doi.org/10.5194/tc-17-2059-2023
https://doi.org/10.1029/2022GL099058
https://doi.org/10.1016/j.epsl.2014.11.003
https://doi.org/10.1098/rspa.2011.0422


5234 S. Jantre et al.: Parametric-uncertainty quantification study of the Amery Ice Shelf

Bassis, J. N., Crawford, A., Kachuck, S., Benn, D., Walker,
C., Millstein, J., Duddu, R., Astrom, J., Fricker, H., and
Luckman, A.: Stability of Ice Shelves and Ice Cliffs in a
Changing Climate, Annu. Rev. Earth Pl. Sc., 52, 221–247,
https://doi.org/10.1146/annurev-earth-040522-122817, 2024.

Berdahl, M., Leguy, G., Lipscomb, W. H., and Urban, N. M.: Sta-
tistical emulation of a perturbed basal melt ensemble of an ice
sheet model to better quantify Antarctic sea level rise uncertain-
ties, The Cryosphere, 15, 2683–2699, https://doi.org/10.5194/tc-
15-2683-2021, 2021.

Berdahl, M., Leguy, G., Lipscomb, W. H., Urban, N. M., and
Hoffman, M. J.: Exploring ice sheet model sensitivity to
ocean thermal forcing and basal sliding using the Commu-
nity Ice Sheet Model (CISM), The Cryosphere, 17, 1513–1543,
https://doi.org/10.5194/tc-17-1513-2023, 2023.

Bevan, S., Cornford, S., Gilbert, L., Otosaka, I., Martin, D.,
and Surawy-Stepney, T.: Amundsen Sea Embayment Ice-Sheet
Mass-Loss Predictions to 2050 Calibrated Using Observa-
tions of Velocity and Elevation Change, J. Glaciol., 1–11,
https://doi.org/10.1017/jog.2023.57, online first, 2023.

Book, C., Hoffman, M. J., Kachuck, S. B., Hillebrand, T. R.,
Price, S., Perego, M., and Bassis, J.: Stabilizing effect of
bedrock uplift on retreat of Thwaites Glacier, Antarctica, at
centennial timescales, Earth Planet. Sc. Lett., 597, 117798,
https://doi.org/10.1016/j.epsl.2022.117798, 2022.

Box, G. E. P. and Wilson, K. B.: On the Experimental Attainment
of Optimum Conditions, J. Roy. Stat. Soc. B Met., 13, 1–38,
https://doi.org/10.1111/j.2517-6161.1951.tb00067.x, 1951.

Brinkerhoff, D.: Variational inference at glacier scale, J. Comput.
Phys., 459, 111095, https://doi.org/10.1016/j.jcp.2022.111095,
2022.

Bulthuis, K., Arnst, M., Sun, S., and Pattyn, F.: Uncertainty
quantification of the multi-centennial response of the Antarctic
ice sheet to climate change, The Cryosphere, 13, 1349–1380,
https://doi.org/10.5194/tc-13-1349-2019, 2019.

Chang, W., Konomi, B. A., Karagiannis, G., Guan, Y., and Ha-
ran, M.: Ice model calibration using semicontinuous spatial data,
Ann. Appl. Stat., 16, 1937–1961, https://doi.org/10.1214/21-
aoas1577, 2022.

Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., and Wood,
M.: Modeling the Response of Nioghalvfjerdsfjorden and
Zachariae Isstrøm Glaciers, Greenland, to Ocean Forcing Over
the Next Century, Geophys. Res. Lett., 44, 11071–11079,
https://doi.org/10.1002/2017GL075174, 2017.

Coulon, V., Bulthuis, K., Whitehouse, P. L., Sun, S., Haub-
ner, K., Zipf, L., and Pattyn, F.: Contrasting Response of
West and East Antarctic Ice Sheets to Glacial Isostatic
Adjustment, J. Geophys. Res.-Earth, 126, e2020JF006003,
https://doi.org/10.1029/2020JF006003, 2021.

DeConto, R. and Pollard, D.: Contribution of Antarctica to
Past and Future Sea-Level Rise, Nature, 531, 591–597,
https://doi.org/10.1038/nature17145, 2016.

Dinniman, M., Asay-Davis, X., Galton-Fenzi, B., Holland, P., Jenk-
ins, A., and Timmermann, R.: Modeling Ice Shelf/Ocean In-
teraction in Antarctica: A Review, Oceanography, 29, 144–153,
https://doi.org/10.5670/oceanog.2016.106, 2016.

Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N.
R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne,
A. J., Ritz, C., and Wernecke, A.: Revisiting Antarctic ice

loss due to marine ice-cliff instability, Nature, 566, 58–64,
https://doi.org/10.1038/s41586-019-0901-4, 2019.

Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer,
H., Seroussi, H., Jourdain, N. C., Slater, D. A., Turner, F. E.,
Smith, C. J., McKenna, C. M., Simon, E., Abe-Ouchi, A., Gre-
gory, J. M., Larour, E., Lipscomb, W. H., Payne, A. J., Shep-
herd, A., Agosta, C., Alexander, P., Albrecht, T., Anderson,
B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A.,
Calov, R., Chambers, C., Champollion, N., Choi, Y., Cullather,
R., Cuzzone, J., Dumas, C., Felikson, D., Fettweis, X., Fujita,
K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Greve,
R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss, M.,
Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P.,
Le clec’h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D.
P., Malles, J.-H., Martin, D.F., Maussion, F., Morlighem, M.,
O’Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet,
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