Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3253-2024
https://doi.org/10.5194/tc-18-3253-2024
Research article
 | 
22 Jul 2024
Research article |  | 22 Jul 2024

Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA

Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder

Related authors

Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Aspect Controls on the Spatial Re-Distribution of Snow Water Equivalence in a Subalpine Catchment
Kori L. Mooney and Ryan W. Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-2364,https://doi.org/10.5194/egusphere-2024-2364, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Tower-based C-band radar measurements of an alpine snowpack
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024,https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Field Studies
Unlocking the potential of melting calorimetry: a field protocol for liquid water content measurement in snow
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024,https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Elucidation of spatiotemporal structures from high-resolution blowing-snow observations
Kouichi Nishimura, Masaki Nemoto, Yoichi Ito, Satoru Omiya, Kou Shimoyama, and Hirofumi Niiya
The Cryosphere, 18, 4775–4786, https://doi.org/10.5194/tc-18-4775-2024,https://doi.org/10.5194/tc-18-4775-2024, 2024
Short summary
Assessing the key concerns in snow storage: a case study for China
Xing Wang, Feiteng Wang, Jiawen Ren, Dahe Qin, and Huilin Li
The Cryosphere, 18, 3017–3031, https://doi.org/10.5194/tc-18-3017-2024,https://doi.org/10.5194/tc-18-3017-2024, 2024
Short summary
Evaluating a prediction system for snow management
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021,https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Implications of surface flooding on airborne estimates of snow depth on sea ice
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021,https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary

Cited articles

Andrews, D. F.: A robust method for multiple linear regression, Technometrics, 16, 523–531, https://doi.org/10.1080/00401706.1974.10489233, 1974. 
Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509–517, https://doi.org/10.1145/361002.361007, 1975. 
Besso, H., Shean, D., and Lundquist, J. D.: Mountain snow depth retrievals from customized processing of ICESat-2 satellite laser altimetry, Remote Sens. Environ., 300, 113 843, https://doi.org/10.1016/j.rse.2023.113843, 2024. 
Bonnell, R., McGrath, D., Hedrick, A. R., Trujillo, E., Meehan, T. G., Williams, K., Marshall, H. P., Sexstone, G., Fulton, J., Ronayne, M. J., Fassnacht, S. R., Webb, R. W., and Hale, K. E.: Snowpack relative permittivity and density derived from near-coincident lidar and ground-penetrating radar, Hydrol. Process., 37, e14996, https://doi.org/10.1002/hyp.14996, 2023. 
Bonner, H. M., Raleigh, M. S., and Small, E. E.: Isolating forest process effects on modelled snowpack density and snow water equivalent, Hydrol. Process., 36, e14475, https://doi.org/10.1002/hyp.14475, 2022. 
Download
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.