Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3253-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-3253-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan
CORRESPONDING AUTHOR
Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, NH, USA
Department of Geosciences, Boise State University, Boise, ID, USA
Ahmad Hojatimalekshah
Department of Geosciences, Boise State University, Boise, ID, USA
Hans-Peter Marshall
Department of Geosciences, Boise State University, Boise, ID, USA
Elias J. Deeb
Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, NH, USA
Shad O'Neel
Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, NH, USA
Department of Geosciences, Boise State University, Boise, ID, USA
Daniel McGrath
Department of Geosciences, Colorado State University, Fort Collins, CO, USA
Ryan W. Webb
Department of Civil and Architectural Engineering & Construction Management, University of Wyoming, Laramie, WY, USA
Randall Bonnell
Department of Geosciences, Colorado State University, Fort Collins, CO, USA
Mark S. Raleigh
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Christopher Hiemstra
Geospatial Management Office, USDA Forest Service, Salt Lake City, UT, USA
Kelly Elder
Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA
Related authors
Caleb G. Pan, Kristofer Lasko, Sean P. Griffin, John S. Kimball, Jinyang Du, Tate G. Meehan, and Peter B. Kirchner
The Cryosphere, 19, 2797–2819, https://doi.org/10.5194/tc-19-2797-2025, https://doi.org/10.5194/tc-19-2797-2025, 2025
Short summary
Short summary
This study examines 35 years of snow cover changes in Alaska’s Yukon River Basin using machine learning to track snowmelt timing and disappearance. Results show snow is melting earlier and disappearing faster due to rising temperatures, highlighting the effects of climate change on water resources, ecosystems, and communities. The findings improve understanding of snow dynamics and provide critical insights for addressing climate-driven challenges in the region.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Caleb G. Pan, Kristofer Lasko, Sean P. Griffin, John S. Kimball, Jinyang Du, Tate G. Meehan, and Peter B. Kirchner
The Cryosphere, 19, 2797–2819, https://doi.org/10.5194/tc-19-2797-2025, https://doi.org/10.5194/tc-19-2797-2025, 2025
Short summary
Short summary
This study examines 35 years of snow cover changes in Alaska’s Yukon River Basin using machine learning to track snowmelt timing and disappearance. Results show snow is melting earlier and disappearing faster due to rising temperatures, highlighting the effects of climate change on water resources, ecosystems, and communities. The findings improve understanding of snow dynamics and provide critical insights for addressing climate-driven challenges in the region.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Kori L. Mooney and Ryan W. Webb
The Cryosphere, 19, 2507–2526, https://doi.org/10.5194/tc-19-2507-2025, https://doi.org/10.5194/tc-19-2507-2025, 2025
Short summary
Short summary
This study observes the movement of snow water equivalence (SWE) during mid-winter surface melt and spring snowmelt periods. We observed that the south-facing slope that experienced mid-winter surface melt events showed meltwater flowing downslope through the snow. The north-facing slope saw a similar redistribution of meltwater during the spring snowmelt period.
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755, https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPS systems) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy-covariance fluxes of water vapor to provide some insight into the evaporation of canopy-intercepted precipitation.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025, https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. Yet previous work has not directly compared machine learning algorithms for snow classification across satellite image products. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using several image products and machine learning models. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover.
Bareera N. Mirza, Eric E. Small, and Mark S. Raleigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-978, https://doi.org/10.5194/egusphere-2025-978, 2025
Short summary
Short summary
Measuring snow depth in mountains is essential for water management, but current satellite methods have limitations. This study evaluates snow depth estimates from the Sentinel-1 radar satellite, revealing significant spatial errors, particularly during snowmelt. Combining it with other satellite data did not improve accuracy, emphasizing the need for improved techniques to advance global snow mapping for better water resource predictions
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3936, https://doi.org/10.5194/egusphere-2024-3936, 2025
Short summary
Short summary
We combined field-based snow depth and snow water equivalent (SWE) measurements, remote sensing data, and machine learning to estimate snow depth and SWE over a 10 km2 local scale area in Sodankylä, Finland. Associations were found for snow depth and SWE with carbon- and mineral-based forest surface soils, alongside dry and wet peatbogs. This approach to upscale field-based snow depth and SWE measurements to a local scale can be used in regions that regularly experience snowfall.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Alton C. Byers, Marcelo Somos-Valenzuela, Dan H. Shugar, Daniel McGrath, Mohan B. Chand, and Ram Avtar
The Cryosphere, 18, 711–717, https://doi.org/10.5194/tc-18-711-2024, https://doi.org/10.5194/tc-18-711-2024, 2024
Short summary
Short summary
In spite of enhanced technologies, many large cryospheric events remain unreported because of their remoteness, inaccessibility, or poor communications. In this Brief communication, we report on a large ice-debris avalanche that occurred sometime between 16 and 21 August 2022 in the Kanchenjunga Conservation Area (KCA), eastern Nepal.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Miguel A. Aguayo, Alejandro N. Flores, James P. McNamara, Hans-Peter Marshall, and Jodi Mead
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-451, https://doi.org/10.5194/hess-2020-451, 2020
Manuscript not accepted for further review
Cited articles
Andrews, D. F.: A robust method for multiple linear regression, Technometrics, 16, 523–531, https://doi.org/10.1080/00401706.1974.10489233, 1974.
Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509–517, https://doi.org/10.1145/361002.361007, 1975.
Besso, H., Shean, D., and Lundquist, J. D.: Mountain snow depth retrievals from customized processing of ICESat-2 satellite laser altimetry, Remote Sens. Environ., 300, 113 843, https://doi.org/10.1016/j.rse.2023.113843, 2024.
Bonnell, R., McGrath, D., Hedrick, A. R., Trujillo, E., Meehan, T. G., Williams, K., Marshall, H. P., Sexstone, G., Fulton, J., Ronayne, M. J., Fassnacht, S. R., Webb, R. W., and Hale, K. E.: Snowpack relative permittivity and density derived from near-coincident lidar and ground-penetrating radar, Hydrol. Process., 37, e14996, https://doi.org/10.1002/hyp.14996, 2023.
Bonner, H. M., Raleigh, M. S., and Small, E. E.: Isolating forest process effects on modelled snowpack density and snow water equivalent, Hydrol. Process., 36, e14475, https://doi.org/10.1002/hyp.14475, 2022.
Booth, A. D., Clark, R., and Murray, T.: Semblance response to a ground-penetrating radar wavelet and resulting errors in velocity analysis, Near Surf. Geophys., 8, 235–246. https://doi.org/10.3997/1873-0604.2010008, 2010.
Boyd, D. R., Alam, A. M., Kurum, M., Gurbuz, A. C., and Osmanoglu, B.: Preliminary Snow Water Equivalent Retrieval of SnowEX20 Swesarr Data, in: Proceedings of the 42nd IEEE International Symposium on Geoscience and Remote Sensing IGARSS, 17–22 July 2022, Kuala Lumpur, Malaysia, vol. 2022-July, ISBN 9781665427920, https://doi.org/10.1109/IGARSS46834.2022.9883412, pp. 3927–3930, 2022.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Broxton, P. D., Leeuwen, W. J. D., and Biederman, J. A.: Improving Snow Water Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements, Water Resour. Res., 55, 3739–3757, https://doi.org/10.1029/2018WR024146, 2019.
Cressie, N.: Fitting variogram models by weighted least squares, J. Int. Ass. Math. Geol., 17, 563–586, https://doi.org/10.1007/BF01032109, 1985.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of Snow Depth from Lidar Data, J. Hydrometeorol., 7, 285–297, https://doi.org/10.1175/JHM487.1, 2006.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: A review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154, 2013.
Deschamps-Berger, C., Gascoin, S., Shean, D., Besso, H., Guiot, A., and López-Moreno, J. I.: Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data, The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, 2023.
Dewitz, J.: National Land Cover Database (NLCD) 2016 Products (ver. 3.0, November 2023), U.S. Geological Survey [data set], https://doi.org/10.5066/P96HHBIE, 2019.
Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 77–77, https://doi.org/10.1214/ss/1177013817, 1986.
Elder, K., Dozier, J., and Michaelsen, J.: Snow accumulation and distribution in an Alpine Watershed, Water Resour. Res., 27, 1541–1552, https://doi.org/10.1029/91WR00506, 1991.
Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial distribution of snow water equivalence in a montane watershed, Hydrol. Process., 12, 1793–1808, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K, 1998.
Essery, R., Morin, S., Lejeune, Y., and Ménard, C. B.: A comparison of 1701 snow models using observations from an alpine site, Adv. Water Resour., 55, 131–148, https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.
Fassnacht, S. R., Heun, C. M., López-Moreno, J., and Latron, J.: Snow Density Variability in the Rio Esera Valley, Pyrenees Mountains, 2. Study Site, Cuadernos de Ivestigación Geográfica, 36, 59–72, 2010.
Goh, A.: Back-propagation neural networks for modeling complex systems, Artif. Intell. Eng., 9, 143–151, https://doi.org/10.1016/0954-1810(94)00011-S, 1995.
Griessinger, N., Mohr, F., and Jonas, T.: Measuring snow ablation rates in alpine terrain with a mobile multioffset ground-penetrating radar system, Hydrol. Process., 32, 3272–3282, https://doi.org/10.1002/hyp.13259, 2018.
Hapfelmeier, A., Hothorn, T., Ulm, K., and Strobl, C.: A new variable importance measure for random forests with missing data, Stat. Comput., 24, 21–34, https://doi.org/10.1007/s11222-012-9349-1, 2014.
Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., Marshall, H., Kormos, P. R., Bormann, K. J., and Painter, T. H.: Direct Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series Into the iSnobal Energy Balance Snow Model, Water Resour. Res., 54, 8045–8063, https://doi.org/10.1029/2018WR023190, 2018.
Hiemstra, C., Marshall, H., Vuyovich, C., Elder, K., Mason, M., and Durand, M.: SnowEx20 Community Snow Depth Probe Measurements, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/9IA978JIACAR, 2020.
Hiemstra, C. A., Vuyovich, C. M., and Marshall, H.-P.: SnowEx20 Grand Mesa Reference GIS Data Sets, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/YDZXY4Q79VIJ, 2021.
Hill, D. F., Burakowski, E. A., Crumley, R. L., Keon, J., Hu, J. M., Arendt, A. A., Wikstrom Jones, K., and Wolken, G. J.: Converting snow depth to snow water equivalent using climatological variables, The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, 2019.
Hojatimalekshah, A., Uhlmann, Z., Glenn, N. F., Hiemstra, C. A., Tennant, C. J., Graham, J. D., Spaete, L., Gelvin, A., Marshall, H.-P., McNamara, J. P., and Enterkine, J.: Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning, The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, 2021.
Houser, P., Rudisill, W., Johnston, J., Elder, K., Marshall, H., Vuyovich, C. M., Kim, E. J., and Mason, M.: SnowEx Meteorological Station Measurements from Grand Mesa, CO, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/497NQVJ0CBEX, 2022.
Hu, X., Hao, X., Wang, J., Huang, G., Li, H., and Yang, Q.: Can the Depth of Seasonal Snow be Estimated From ICESat-2 Products: A Case Investigation in Altay, Northwest China, IEEE Geosci Remote S., 19, 1–5, https://doi.org/10.1109/LGRS.2021.3078805, 2021.
Isaaks, E. H. and Srivastava, R. M.: Applied Geostatistics, Oxford University Press, New York, NY, ISBN 9780195050134, 1989.
Jain, A., Mao, J., and Mohiuddin, K.: Artificial neural networks: a tutorial, Computer, 29, 31–44, https://doi.org/10.1109/2.485891, 1996.
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.
Kahaner, D., Moler, C., and Nash, S.: Numerical methods and software, Prentice Hall, Englewood Cliffs, ISBN 0-13-627258-4, 1989.
Kim, J. H., Cho, S. J., and Yi, M. J.: Removal of ringing noise in GPR data by signal processing, Geosci. J., 11, 75–81, https://doi.org/10.1007/BF02910382, 2007.
Kuwahara, M., Hachimura, K., Eiho, S., and Kinoshita, M.: Processing of RI-Angiocardiographic Images, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4684-0769-3_13, 187–202, 1976.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ), ISPRS J. Photogramm., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into hydrologic science during the WRR era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015WR017616, 2015.
Li, L. and Pomeroy, J. W.: Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data, J. Appl. Meteorol., 36, 205–213, https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2, 1997.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J., and Lannoy, G. J. M. D.: Snow depth variability in the Northern Hemisphere mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022.
López-Moreno, J. I., Fassnacht, S. R., Heath, J. T., Musselman, K. N., Revuelto, J., Latron, J., Morán-Tejeda, E., and Jonas, T.: Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent, Adv. Water Resour., 55, 40–52, https://doi.org/10.1016/j.advwatres.2012.08.010, 2013.
Lukas, V. and Baez, V.: 3D Elevation Program—Federal best practices, U. S. Geological Survey Fact Sheet 2020–3062, U.S. Geological Survey, https://doi.org/10.3133/fs20203062, 2021.
Lv, Z. and Pomeroy, J. W.: Assimilating snow observations to snow interception process simulations, Hydrol. Process., 34, 2229–2246, https://doi.org/10.1002/hyp.13720, 2020.
Marks, D., Dozier, J., and Davis, R. E.: Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 1. Meteorological measurements and monitoring, Water Resour. Res., 28, 3029–3042, https://doi.org/10.1029/92WR01482, 1992.
Marshall, H., Vuyovich, C., Hiemstra, C., Brucker, L., Elder, K., Deems, J., Newlin, J., Bales, R., Nolin, A., and Trujillo, E.: NASA SnowEx 2020 Experiment Plan, NASA, https://snow.nasa.gov/campaigns/snowex/experimental-plan-2020 (last access: 7 June 2024), pp. 1–100, 2019.
Marshall, H. P., Koh, G., Sturm, M., Johnson, J. B., Demuth, M., Landry, C., Deems, J. S., and Gleason, J. A.: Spatial variability of the snowpack: Experiences with measurements at a wide range of length scales with several different high precision instruments, in: Proceedings ISSW 2006, International Snow Science Workshop, Telluride CO, USA, 1–6 October 2006, http://arc.lib.montana.edu/snow-science/item/947 (last access: 7 June 2024), pp. 359–364, 2006.
Marti, R., Gascoin, S., Berthier, E., de Pinel, M., Houet, T., and Laffly, D.: Mapping snow depth in open alpine terrain from stereo satellite imagery, The Cryosphere, 10, 1361–1380, https://doi.org/10.5194/tc-10-1361-2016, 2016.
McCreight, J. L. and Small, E. E.: Modeling bulk density and snow water equivalent using daily snow depth observations, The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014, 2014.
McGrath, D., Webb, R., Shean, D., Bonnell, R., Marshall, H. P., Painter, T. H., Molotch, N. P., Elder, K., Hiemstra, C., and Brucker, L.: Spatially Extensive Ground-Penetrating Radar Snow Depth Observations During NASA's 2017 SnowEx Campaign: Comparison With In Situ, Airborne, and Satellite Observations, Water Resour. Res., 55, 10026–10036, https://doi.org/10.1029/2019WR024907, 2019.
McGrath, D., Bonnell, R., Zeller, L., Olsen-Mikitowicz, A., Bump, E., Webb, R., and Marshall, H.-P.: A Time Series of Snow Density and Snow Water Equivalent Observations Derived From the Integration of GPR and UAV SfM Observations, Frontiers in Remote Sensing, 3, 1–15, https://doi.org/10.3389/frsen.2022.886747, 2022.
Meehan, T. G.: SnowEx20 Grand Mesa IOP BSU 1 GHz Multi-polarization GPR, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/Q2LFK0QSVGS2, 2021.
Meehan, T.: tatemeehan/SnowEx2020_BSU_pE_GPR: Multipolarization Radargram Processing SnowEx 2020 Grand Mesa IOP (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.11521496, 2024.
Meehan, T. G. and Hojatimalekshah, A.: SnowEx20 Grand Mesa IOP Lidar and GPR-Derived Snow Water Equivalent and Snow Density, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/LANQ53RTJ2DR, 2024a.
Meehan, T. G. and Hojatimalekshah, A.: SnowEx20 Grand Mesa IOP QSI Lidar Snow Depth Data, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/M9TPF6NWL53K, 2024b.
Meehan, T. G., Marshall, H. P., Bradford, J. H., Hawley, R. L., Overly, T. B., Lewis, G., Graeter, K., Osterberg, E., and McCarthy, F.: Reconstruction of historical surface mass balance, 1984–2017 from GreenTrACS multi-offset ground-penetrating radar, J. Glaciol., 67, 219–228, https://doi.org/10.1017/jog.2020.91, 2021.
Meløysund, V., Leira, B., Høiseth, K. V., and Lisø, K. R.: Predicting snow density using meteorological data, Meteorol. Appl., 14, 413–423, https://doi.org/10.1002/met.40, 2007.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US, NPJ Clim. Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.
National Academies of Sciences Engineering and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, National Academies Press, Washington, D.C., ISBN 978-0-309-46757-5, https://doi.org/10.17226/24938, 2018.
Neidell, N. S. and Taner, M. T.: Semblance and Other Coherency Measrues for Multichannel Data, Geophysics, 36, 482–497, https://doi.org/10.1190/1.1440186, 1971.
NOAA: VDatum 4.3 Vertical Datum Transformation, National Ocean Service NOAA Department of Commerce [software], https://vdatum.noaa.gov/ (last access: 7 June 2024), 2021.
Painter, T.: ASO L4 Lidar Snow Depth 3m UTM Grid, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/KIE9QNVG7HP0, 2018a.
Painter, T.: ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/M4TUH28NHL4Z, 2018b.
Painter, T. H. and Bormann, K. J.: ASO L4 Lidar Point Cloud Digital Terrain Model 3 m UTM Grid, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/2EHMWG4IT76O, 2020.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks,D., Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M. K., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Pierce, D. W., Barnett, T. P., Hidalgo, H. G., Das, T., Bonfils, C., Santer, B. D., Bala, G., Dettinger, M. D., Cayan, D. R., Mirin, A., Wood, A. W., and Nozawa, T.: Attribution of declining Western U. S. Snowpack to human effects, J. Climate, 21, 6425–6444, https://doi.org/10.1175/2008JCLI2405.1, 2008.
Raleigh, M. S. and Small, E. E.: Snowpack density modeling is the primary source of uncertainty when mapping basin-wide SWE with lidar, Geophys. Res. Lett., 44, 3700–3709, https://doi.org/10.1002/2016GL071999, 2017.
Rovansek, R. J., Kane, D. L., and Hinzman, L. D.: Improving estimates of snowpack water equivalent using double sampling, in: Proceedings 61st Western Snow Conference, 9–11 June 1993, Quebec City, Quebec, pp. 157–163, 1993.
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins, W. D., and Kaatz, L.: A low-to-no snow future and its impacts on water resources in the western United States, Nat. Rev. Earth Environ., 2, 800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021.
Singh, S., Durand, M., Kim, E., Pan, J., Kang, D. H., and Barros, A. P.: A Physical-Statistical Retrieval Framework to Estimate SWE from X and Ku-Band SAR Observations, vol. 2023-July, 16–21 July 2023, Pasadena, CA, USA, IEEE, ISBN 9798350320107, https://doi.org/10.1109/IGARSS52108.2023.10281838, pp. 17–20, 2023.
Sturm, M. and Holmgren, J.: Differences in compaction behavior of three climate classes of snow, Ann. Glaciol., 26, 125 130, https://doi.org/10.3189/1998AoG26-1-125-130, 1998.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth data and climate classes, J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1, 2010.
Štroner, M., Urban, R., Lidmila, M., Kolář, V., and Křemen, T.: Vegetation Filtering of a Steep Rugged Terrain: The Performance of Standard Algorithms and a Newly Proposed Workflow on an Example of a Railway Ledge, Remote Sens.-Basel, 13, 3050, https://doi.org/10.3390/rs13153050, 2021.
Tedesco, M., Reichle, R., Low, A., Markus, T., and Foster, J. L.: Dynamic Approaches for Snow Depth Retrieval From Spaceborne Microwave Brightness Temperature, IEEE T. Geosci. Remote, 48, 1955–1967, https://doi.org/10.1109/TGRS.2009.2036910, 2010.
Tiuri, M. E., Sihvola, A. H., Nyfors, E. G., and Hallikaiken, M. T.: The Complex Dielectric Constant of Snow at Microwave Frequencies, IEEE J. Oceanic Eng., 9, 377–382, https://doi.org/10.1109/JOE.1984.1145645, 1984.
Treichler, D. and Kääb, A.: Snow depth from ICESat laser altimetry — A test study in southern Norway, Remote Sens. Environ., 191, 389–401, https://doi.org/10.1016/j.rse.2017.01.022, 2017.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Scaling properties and spatial organization of snow depth fields in sub-alpine forest and alpine tundra, Hydrol. Process., 23, 1575–1590, https://doi.org/10.1002/hyp.7270, 2009.
Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J., Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., Nolin, A., Osmanoglu, B., Vuyovich, C., Kim, E., Taylor, D., Merkouriadi, I., Brucker, L., Navari, M., Dumont, M., Kelly, R., Kim, R. S., Liao, T.-H., Borah, F., and Xu, X.: Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing, The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, 2022.
US Census Bureau: Cartographic Boundary Files, US Census Bureau [data set], https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html (last access: 7 June 2024), 2020.
Valence, E., Baraer, M., Rosa, E., Barbecot, F., and Monty, C.: Drone-based ground-penetrating radar (GPR) application to snow hydrology, The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, 2022.
Vecherin, S., Meyer, A., Quinn, B., Letcher, T., and Parker, M.: Simulation of Snow Texture for Autonomous Vehicle Numerical Modeling, National Defense Industrial Association, http://gvsets.ndia-mich.org/publication.php?documentID=928 (last access: 7 June 2024), 2022.
Vuyovich, C. M., Marshall, H., Elder, K., Hiemstra, C., Brucker, L., and McCormick, M.: SnowEx20 Grand Mesa Intensive Observation Period Snow Pit Measurements, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/DUD2VZEVBJ7S, 2021.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: From error visibility to structural similarity, IEEE T. Image Process., 13, 600–612, https://doi.org/10.1109/TIP.2003.819861, 2004.
Webb, R. W.: SnowEx20 Grand Mesa IOP UNM 800 and 1600 MHz MALA GPR, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/WE9GI1GVMQF6, 2021.
Webb, R. W., Marziliano, A., McGrath, D., Bonnell, R., Meehan, T. G., Vuyovich, C., and Marshall, H.-P.: In Situ Determination of Dry and Wet Snow Permittivity: Improving Equations for Low Frequency Radar Applications, Remote Sens.-Basel, 13, 4617, https://doi.org/10.3390/rs13224617, 2021.
Wetlaufer, K., Hendrikx, J., and Marshall, L.: Spatial heterogeneity of snow density and its influence on snow water equivalence estimates in a large mountainous basin, Hydrology, 3, 3, https://doi.org/10.3390/hydrology3010003, 2016.
Wharton, R. P., Hazen, G. A., Rau, R. N., and Best, D. L.: Advancements In Electromagnetic Propagation Logging, in: Proceedings Society of Petroleum Engineers Rocky Mountain Regional Meeting, 14–16 May 1980, Casper, Wyoming, Society of Petroleum Engineers, https://doi.org/10.2118/9041-MS, 1980.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3, 524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Wong, J., Han, L., Bancroft, J. C., and Stewart, R. R.: Automatic time-picking of first arrivals on noisy microseismic data, in: Proceedings Canadian Society of Exploration Geophysics Meeting, 13–15 October 2009, Olympic Park, Calgary, Canada, pp. 1–6, 2009.
Yildiz, S., Akyurek, Z., and Binley, A.: Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry, Hydrol. Process., 35, 1–15, https://doi.org/10.1002/hyp.14190, 2021.
Yilmaz, Ö.: Seismic Data Analysis, Society of Exploration Geophysicists, Tulsa, OK, ISBN 978-1-56080-094-1, https://doi.org/10.1190/1.9781560801580, 2001.
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can...