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Abstract. Estimating snow mass in the mountains remains a
major challenge for remote-sensing methods. Airborne lidar
can retrieve snow depth, and some promising results have re-
cently been obtained from spaceborne platforms, yet density
estimates are required to convert snow depth to snow wa-
ter equivalent (SWE). However, the retrieval of snow bulk
density remains unsolved, and limited data are available to
evaluate model estimates of density in mountainous terrain.
Toward the goal of landscape-scale retrievals of snow den-
sity, we estimated bulk density and length-scale variabil-
ity by combining ground-penetrating radar (GPR) two-way
travel-time observations and airborne-lidar snow depths col-
lected during the mid-winter NASA SnowEx 2020 campaign
at Grand Mesa, Colorado, USA. Key advancements of our
approach include an automated layer-picking method that
leverages the GPR reflection coherence and the distributed
lidar–GPR-retrieved bulk density with machine learning. The
root-mean-square error between the distributed estimates and
in situ observations is 11 cm for depth, 27 kgm−3 for den-
sity, and 46 mm for SWE. The median relative uncertainty in
distributed SWE is 13 %. Interactions between wind, terrain,
and vegetation display corroborated controls on bulk density
that show model and observation agreement. Knowledge of
the spatial patterns and predictors of density is critical for the

accurate assessment of SWE and essential snow research ap-
plications. The spatially continuous snow density and SWE
estimated over approximately 16 km2 may serve as necessary
calibration and validation for stepping prospective remote-
sensing techniques toward broad-scale SWE retrieval.

1 Introduction

Throughout the past half-century, snowpacks in the west-
ern US declined by ∼ 20 % because of ongoing warming
(Pierce et al., 2008; Mote et al., 2018). By the end of the
21st century, projections suggest that the snow water equiv-
alent (SWE) in this region will decline by an additional
∼ 50 % (Siirila-Woodburn et al., 2021). The decreased snow
water supply and increased demand motivate new innova-
tions for SWE measurement and modeling (e.g., Lettenmaier
et al., 2015). Ground observations of SWE, such as those
from snow telemetry (SNOTEL) sites or manual measure-
ments performed during snow surveys, provide useful infor-
mation in the context of a historical record. However, as a
strategy for adapting to changing snow-climatological con-
ditions, building the relationship between these observations
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and snow distribution patterns across watersheds requires
innovative spatiotemporal datasets and for snow hydrology
models to advance.

In this pursuit, NASA’s snow experiment (SnowEx; 2017–
2023) campaign tested a suite of remote-sensing instruments
with the potential to measure global SWE if deployed on a
future satellite platform (Marshall et al., 2019). The work
presented here was part of SnowEx and was designed to ex-
pand the spatial scale over which snow depth and density can
be observed and reliably extrapolated. Our work provides a
validation dataset for SnowEx SWE retrieval methods and
yields new insights into the spatial patterns and driving fac-
tors of snow density at Grand Mesa, Colorado.

Spaceborne snow depth estimates have been obtained from
passive microwave sensors (Tedesco et al., 2010), Sentinel-
1 radar returns (Lievens et al., 2019, 2022), high-resolution
satellite stereo imagery (Marti et al., 2016; McGrath et al.,
2019), and light detection and ranging (lidar) with ICESat
(Treichler and Kääb, 2017) and ICESat-2 (Hu et al., 2021;
Deschamps-Berger et al., 2023; Besso et al., 2024). Lidar
and photogrammetric techniques can measure snow depth by
differencing repeated acquisitions during periods with and
without snow cover (e.g., Deems et al., 2013). Because it
has the advantages of greater spatial resolution and flexible
scheduling to target acquisitions during periods of interest,
airborne lidar constitutes a prominent method for estimating
snow depth and is flown operationally for integration with
hydrologic modeling at the catchment scale (Painter et al.,
2016; Hedrick et al., 2018). Regardless of the choice in snow
depth retrieval, an estimate of snow density is required to
convert snow depths to SWE, and bulk density often pro-
vides the greatest source of uncertainty in SWE estimates,
especially in deeper snow (Raleigh and Small, 2017).

Excavating and weighing snow samples of a known vol-
ume remains the state-of-the-art approach for measuring
snow density, even though this labor-intensive work limits
the number of possible observations. Because snow depth
varies more in space than density (e.g., Elder et al., 1991;
Sturm et al., 2010; López-Moreno et al., 2013) and depth
measurements may be collected more rapidly, density is ob-
served far less frequently (e.g., Rovansek et al., 1993; Elder
et al., 1998). As a result, snow sampling strategies tend to be
too coarse to examine the 100–103 m scale spatial variability
of snow density (e.g., Fassnacht et al., 2010), and the spatial
nature of snow density remains largely unknown.

Often, empirical models are used to spatially distribute
the density in SWE estimates. Linear regression models de-
veloped using snow depth alone are often unsuccessful be-
cause the snow load only has a linear effect on bulk den-
sity, while snow type characteristics (e.g., faceted crystals
versus rounded-grain snow) can have an exponential effect
(Sturm and Holmgren, 1998). Successful regression models
parameterized by snow depth have been split into elevation
and month-of-year classes (Jonas et al., 2009), accumulation
and melt seasons (Hill et al., 2019), or day-of-year and snow

cover classification (Sturm et al., 2010) and account for the
effects of snow depth and snow age on density (McCreight
and Small, 2014). Snow density often depends on environ-
mental (i.e., slope, aspect, elevation, and vegetation) and cli-
matological (i.e., precipitation, solar radiation, temperature,
and wind) factors (Meløysund et al., 2007), which makes
these constituents candidate features for predicting distribu-
tion patterns (e.g., Winstral et al., 2002). Machine-learning
(ML) approaches utilizing environmental or climatological
features (e.g., Elder et al., 1998; Wetlaufer et al., 2016; Brox-
ton et al., 2019) are often distributed over vast areas with little
of the validation or consideration of the underlying physical
processes required to gain an acceptable level of model con-
fidence.

Snow density can also be distributed with process-based
snow models, which may account for changes in bulk snow
density due to new snowfall, metamorphism, and com-
paction. The representations of snow densification range
in complexity, with some models utilizing time-dependent
compaction curves and other models representing snow com-
paction dynamically as a function of snow viscosity and
overburden pressure (Essery et al., 2013). Dynamic mod-
els offer more consistent and accurate characterizations of
snowpacks; however, even for a single physics-based model,
performance in snow density simulations varies across snow
climates and watersheds (e.g., Marks et al., 1992; Lv and
Pomeroy, 2020). The choice of snow density model (em-
pirical or physical) produces differences in spatial distribu-
tions and basin mean estimates of snow density (Raleigh and
Small, 2017).

Despite numerous techniques for modeling snow density,
few studies characterize spatial variations in snow density
and the underlying processes driving variability, largely due
to limited density datasets. The labor-intensive nature of
in situ observations severely limits spatial analyses, requir-
ing the development of broad-scale snow density retrieval.
Relationships between snow density, dielectric permittiv-
ity, and radar signals (e.g., Tiuri et al., 1984) provide the
radar-retrieved snow density. Yet, many radar remote-sensing
retrievals require constraints on the snow depth, density,
stratigraphy, and microstructure to be reliable now (Tsang
et al., 2022). Our research utilizes ground-penetrating radar
(GPR), lidar, and ML to define an approach to map snow
density at resolutions appropriate for air- and spaceborne
remote-sensing calibration and validation.

Ground-penetrating radar records the amplitude and travel
time of each of a series of echoes from short-pulse electro-
magnetic waves as an image in range-time and position coor-
dinates. Provided the snow depth is constrained, GPR analy-
sis can estimate the snow density, or, by exploiting a ray path
function of travel time versus antenna separation (offset), the
snow depth and density can be estimated independently (e.g.,
Griessinger et al., 2018; Meehan et al., 2021). By combining
snow depths from drone-based aerial photogrammetry or li-
dar with GPR travel times, snow density has been estimated
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Figure 1. (a) Study area map of snow pit locations (yellow circles), the Mesa West weather station (brown circle), GPR transects (black lines),
and the lidar boundary (grey wireframe). Land-cover classification identifies the forested areas as green and lakes as blue. (b) Inset map of
Grand Mesa, Colorado, depicting the extent of the dataset acquired during the NASA SnowEx 2020 Intensive Observation Period at Grand
Mesa, Colorado (Hiemstra et al., 2021). (c) Inset map of the contiguous US which identifies the location of Grand Mesa, Colorado. Land-
cover classification data were accessed from the 2016 National Land Cover Database (Dewitz, 2019). Slope hillshade data were accessed
from the USGS 3D Elevation Program (Lukas and Baez, 2021). Cartographic boundary files were accessed from the Census Bureau’s
Master Address File/Topologically Integrated Geographic Encoding and Referencing geographic database (US Census Bureau, 2020). The
geographic coordinate projection of these maps is UTM zone 12 N; EPSG code 32612.

along 100 m scale transects and then analyzed as a time se-
ries to understand the densification process (McGrath et al.,
2022; Valence et al., 2022; Bonnell et al., 2023) and explore
extrapolation across the study-plot scale (Yildiz et al., 2021).

Our work leverages airborne lidar snow depths in tandem
with GPR two-way travel times (TWTs) to facilitate density
estimates. These data then become input to multiple ML re-
gression approaches to develop and compare spatially con-
tinuous estimates of bulk snow density and SWE across the
entire lidar domain. Sensitivity testing of regression mod-
els informed the model repeatability and forcing processes
for spatial density patterns at Grand Mesa, Colorado, USA.
As part of this workflow, we developed a reliable automated
radar coherence approach for automatically interpreting the
TWTs needed to retrieve snow density. This work highlights
interactions between snow, terrain, vegetation, and wind in
the densification process as well as the importance of careful
ML model parameterizations and validation approaches. Our
work addresses the need for high-accuracy distributed den-
sity measurements as assimilation data for parameterizations
of snow densification to reduce runoff model uncertainty.

Additional knowledge of the spatial patterns and predictors
of density may improve the calibration, validation, and pa-
rameterization of radar remote-sensing SWE retrievals.

2 Methods

2.1 Study area

Grand Mesa, Colorado, is a high-elevation subalpine plateau
with an average elevation of ∼ 3200 m and an area of
∼ 1300 km2. Grand Mesa has a cold and dry continental
snow climate, low relief, and vegetation cover that varies
from shrub steppe and subalpine meadow to dense conifer
forest. These factors, along with the proximity to a regional
airport, make Grand Mesa a near-ideal study area for evaluat-
ing airborne snow remote-sensing techniques and developing
many challenging snow remote-sensing advancements (e.g.,
Boyd et al., 2022; Singh et al., 2023).

The Grand Mesa NASA SnowEx Intensive Observation
Period (IOP) spanned 27 January–12 February 2020. Dur-
ing that time, more than 150 snow pits were excavated and
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nearly 38 000 in situ snow depth measurements were col-
lected. Snow pits were distributed within forested and open
areas along the swaths of the airborne remote-sensing cam-
paign flight lines (Fig. 1).

As part of the SnowEx campaigns at Grand Mesa, five me-
teorological stations were installed between 2016 and 2017
and operated through the 2021 water year (Houser et al.,
2022). Of these sites, the 3 m elevation wind speed and di-
rection data measured at Mesa Middle (MM) and Mesa West
(MW) were examined as the validation for snow transport
potential and to quantify differences in exposed and shel-
tered terrain (Appendix C1). The MW station was in exposed
western terrain of the mesa, 350 m west of the study do-
main boundary (Fig. 1). The MM station is sheltered within a
dense stand of conifer trees 18.7 km east of the study domain
boundary.

2.2 GPR data acquisition

Two GPR instruments were operated during the first week of
the Grand Mesa IOP. To acquire data within forested areas of
central Grand Mesa, a conventional L-band GPR was pulled
by ski during 30 January to 1 February and on 5 February
(Webb, 2021). This unit was equipped with a global posi-
tioning system (GPS) receiver with 2.5 m horizontal accu-
racy. In open areas, we deployed a multi-polarization L-band
GPR fastened within a sled that was pulled by a snowmo-
bile at approximately 3 ms−1 in the open areas of the central
and south regions of western Grand Mesa on 28 and 29 Jan-
uary and 4 February 2020 (Meehan, 2021). The snowmo-
bile was driven along the edges of forested stands but could
not travel through densely treed areas. The multichannel L-
band GPR was configured with one transmitting antenna and
two receiving antennas that were oriented parallel (H) and
orthogonal (V) to the transmitter (H). The transmit and re-
ceive antennas were separated by 25 cm. Using this GPR
configuration, we simultaneously acquired the radar imagery
in co- and cross-polarizations (HH and HV). A global navi-
gation satellite system (GNSS) receiver with approximately
1 m horizontal position uncertainty was located on the snow-
mobile 5 m away from the GPR array. We applied a geo-
metric correction to relocate the coordinate positions to the
antenna midpoint of each channel. The GPR data were ac-
quired within a few meters of, but not directly beside, the
snow pit walls, which necessitated a radius for pairing re-
trieved or modeled data with validation observations. The
GPR systems were operated continuously, collecting approx-
imately 30 traces per second, given the duration of the time
window for each trace (30 ns), the sample interval (0.1 ns),
and the number of stacks acquired (2). Due to differences
in the travel speed, the spatial interval of the GPR traces
collected via snowmobile is approximately 10± 1 cm, while
the interval for traces collected by ski is 5± 1 cm. We used
piecewise cubic Hermite interpolating polynomials (Kahaner
et al., 1989) to fix a geolocation to every acquired trace, as

the GPS acquisition rate was 1 Hz. Throughout this week, we
acquired 144 km of quasi-gridded and spiraled snowmobile-
driven radar transects and 16 km of skied spiral transects in
the forest. Spiral transects were coincident with depth mea-
surements. We used a 4.5 km by 3.5 km portion of the snow-
on lidar acquisition to bound the GPR transects (Fig. 1) and
omitted any transects acquired beyond the lidar boundary.

2.3 GPR data processing

Multi-polarization radargrams were processed using an au-
tomated routine (Meehan, 2024). We applied a frequency–
wavenumber (F-K) filter as a 2D bandpass filter (Kim et al.,
2007). Time-zero correction was performed automatically
using the modified energy ratio first-break picker (Wong
et al., 2009). We removed coherent noise by subtracting the
median trace from the radargrams (Kim et al., 2007). The
trace amplitudes were corrected for spherical divergence by
applying t-squared scaling as a signal gain function (Yil-
maz, 2001). In a random-noise removal step, we then ap-
plied edge-preserving smoothing (Kuwahara et al., 1976).
This routine emphasized the continuity and amplitude of the
ground reflection, which benefited the method for automat-
ically picking the travel times. The GPR data within forests
were processed with a bandpass filter, time-zero correction,
and background subtraction prior to manual interpretation
using a semiautomatic algorithm and are available through
the National Snow and Ice Data Center (Webb, 2021). The
slower-paced data acquisition by ski improves the quality of
the radargram, which benefits the tracking of the ground sur-
face in the more variable forest environment.

2.3.1 Multi-polarization coherence for automatic
two-way travel-time determination

The rough ground depolarized the L-band radar signal, and
thus we used the coherence between the co- and cross-
polarized channels as a filter that illuminates the ground
reflections and removes the planar reflections of the snow
stratigraphy. We paired the co- and cross-polarization radar-
grams into shot gathers, which are the bins of traces that
share the same transmitter location. The automatic travel-
time pick is determined by maximizing the coherence be-
tween the co- and cross-polarization shot gathers. To mea-
sure the coherence for each pair of traces, we applied the
unnormalized cross-correlation sum:

C(t)=
1
2

t+N/2∑
j=t−N/2


[
M∑
i=1

Si,j

]2

−

M∑
i=1

S2
i,j

 , (1)

which is half of the summed difference between the energy of
the stacked traces and the energy of the input traces (Neidell
and Taner, 1971). The calculation in Eq. (1) is performed in a
sliding window over N = 11 samples, which is evaluated at
every sample (j ) of the GPR signal (Si,j ) for channel i (M =
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2). The HH–HV coherence (CHH-HV) at each shot location is
then normalized by the maximum coherence,

CHH-HV =
C(t)

maxC(t)
. (2)

Small (one-wavelength) offsets introduce waves that have
an approximately normal incidence with respect to the reflec-
tion horizons, such that the nonlinear effects of travel-time
moveout are negligible and snow depth can be directly re-
trieved from the measurement of TWT. Because the offsets
are equal, the travel times to the ground for each channel are
equal to within a small error (due to the variability of the
ground surface inside the radar footprint), and therefore the
two channels sum coherently.

We automatically chose the travel time with the maximum
coherence of each trace and subtracted 1 ns (1/2 wavelet) to
estimate the first break of the reflection (Booth et al., 2010).
We then applied a median filter to remove outliers and re-
viewed the automatic picks for any systematic errors.

2.4 Observed, derived, and explanatory data

2.4.1 In situ measurements

Snow pit observations and manual depth probe measure-
ments were collected throughout the 27 January to 12 Febru-
ary 2020 IOP to serve as a validation for the SWE and
snow depth retrieved by airborne remote sensing. Snow pits
were measured for the snow depth, density, water equivalent,
temperature, wetness, liquid-water content, grain size, and
stratigraphy (Vuyovich et al., 2021). Snow density (ρs,pit)
was measured continuously every 10 cm from the snow sur-
face to the ground using a 1000 cm3 wedge sampler, with
duplicate samples. If the difference between the two mea-
surements at a given depth exceeded 10 %, the density was
sampled a third time, and bulk density was then calculated
by averaging all the measurements for each snow pit. Be-
cause the density snapshot we retrieved is valid for the time
of the lidar flight, we corrected the measured density to
12:00 on 1 February using densification rates determined by
linear regression for both open and forested areas. Liquid-
water content was estimated by combining the density and in
situ measurements of dielectric permittivity in an empirical
formula, which showed that the snowpack remained almost
completely dry throughout the IOP (Webb et al., 2021). Snow
depth measurements (hs,probe) were collected using geolo-
cated probes (± 3 m spatial accuracy) along spiral transects
(∼ 60 m radius) centered around pits (Hiemstra et al., 2020).

2.4.2 Lidar snow depth

Snow depth (Hs,lidar) was estimated from repeated airborne-
lidar point cloud surface elevations of snow-free and snow-
covered terrain (e.g., Lague et al., 2013). The Airborne
Snow Observatories (ASOs) performed the snow-free acqui-
sition on 26 September 2016 (Painter et al., 2016; Painter

and Bormann, 2020) and NV5 Geospatial (formerly Quan-
tum Spatial Inc.) acquired snow-covered surface elevations
during the IOP; both had a point density of approximately
20 points m−2. We selected the 1–2 February 2020 flight
to minimize temporal differences with the GPR and re-
sulting errors due to snow redistribution and densification.
We transformed the 2016 snow-free vertical datum into
NAVD88/Geoid 12B (the same as the 2020 snow-on) using
NOAA VDatum 4.3 software (NOAA, 2021). Then, we ap-
plied the point-cloud-differencing method to estimate snow
depth on a 1 m grid (Appendix B1). Negative snow depth val-
ues were filtered as no-data values. After computing the snow
depth, the 3 m ASO bare-earth and vegetation data products
were resampled using the nearest-neighbor approximation
to the 1 m resolution of the snow-covered SnowEx 2020 li-
dar acquisitions, and the coordinate system was transformed
from UTM zone 13 N to UTM zone 12 N. As a compari-
son between our lidar snow depths and data processed using
raster differencing, we used the 1–2 February 2020 ASO-
acquired snow depths and upscaled Hs,lidar to 3 m using the
nearest-neighbor method.

2.4.3 Lidar–GPR-estimated density

We combined the lidar snow depths with the GPR TWTs to
calculate the radar wave velocity, which is only a function of
density in dry snow. We applied a k-d tree searcher (Bentley,
1975) to find the lidar coordinates within a 1 m radius of the
GPR TWTs. We then used the median values of the TWTs
within a 1 m radius of these coordinates to interpolate to the
lidar grid.

The average electromagnetic wave speed in the snowpack
was estimated using

vs,lidar-GPR = 2
Hs,lidar

τ
(3)

for each of the coincident lidar snow depths (Hs,lidar) and
GPR two-way travel-times (τ ). We then related the electro-
magnetic wave speed to the dry snow density using the Com-
plex Refractive Index Method (CRIM; Wharton et al., 1980):

ρs,lidar-GPR = ρi

(
1−

va(vi− vs,lidar-GPR)

vs,lidar-GPR(vi− va)

)
. (4)

The CRIM equation relies on the known wave
speeds of the pore space (va= 0.3 ms−1) and ice ma-
trix (vi= 0.169 mns−1), the measured bulk wave speed
of the snowpack (vs,lidar-GPR; Eq. 3), and the density of
ice (ρi = 917 kgm−3) to determine the dry snow density
(ρs,lidar-GPR; Eq. 4).

2.4.4 Wind and terrain exposure

Wind data were examined from 1 October 2019 through the
end of the SnowEx IOP on 12 February 2020. Hourly air tem-
perature data parameterized an empirical relationship to de-
termine the threshold for snow-transportable wind speed (Li
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and Pomeroy, 1997). For values exceeding this threshold mi-
nus the 95 % confidence interval, we then determined the me-
dian wind speed and direction for snow transport (Fig. S4b).
We utilized the maximum upwind slope (Sx) and wind factor
(Winstral et al., 2002; Appendix C1) as parameters explain-
ing the patterns and processes captured by the ML regres-
sion ensemble, rather than incorporating this information as
model predictors of snow density. To validate the GPR–lidar-
estimated training data and the modeled results, we calcu-
lated the correlation between the model input and output and
the Sx and wind factor rasters for all wind directions.

2.5 Spatial scales of variability for snow depth, travel
time, density, and SWE

We examined the differences in snow properties between
forested and open areas using generalized relative semi-
variograms (Isaaks and Srivastava, 1989). The generalized
relative semi-variogram describes the average percent vari-
ability, relative to the mean, as a function of separation dis-
tance between observations. To estimate the spatial variabil-
ity of the snow depth, TWT, density, and the resulting SWE
of the 1 m gridded data along the radar transects, the ex-
perimental variograms were first calculated in 1 m bins up
to a 250 m lag and then fitted with exponential models via
least squares to estimate the range, sill, and nugget parame-
ters (e.g., Cressie, 1985). We used an exponential variogram
model for which the correlation length is equal to 3 times
the range parameter. We created 250 realizations of the ex-
perimental variogram calculation using Monte Carlo simula-
tion with 10 % random subsampling to assess the means and
standard deviations of the variogram parameters (Efron and
Tibshirani, 1986).

2.6 Modeling of the spatial snow density

2.6.1 Machine-learning model ensemble

To distribute the spatial observations of average snow den-
sity to areas without GPR observations, we tested three re-
gression techniques: multiple linear regression (MLR; An-
drews, 1974; Appendix A1.1), random-forest regression
(RF; Breiman, 2001; Appendix A1.2), and artificial-neural-
network regression (ANN; Jain et al., 1996; Appendix A1.2).
We examined the ∼ 16 km2 area of the lidar domain, which
closely bounded the extent of the GPR survey. A set of
normalized predictor variables, notated with capital letter-
ing, were developed using the elevations of four lidar rasters
(the bare-earth elevation (Zg), snow-covered elevation (Zs),
snow depth (Hs), and vegetation height (Hveg)); the aspect,
slope, and x and y derivatives of the elevation rasters (ex-
cluding Hveg); and the distance to the nearest vegetation
≥ 0.5 m (Sveg). Aspect rasters were transformed by the co-
sine to remove the wrapping ambiguity around north. We
smoothed the elevation, vegetation height, and snow depth

rasters using a median filter with a 5 m× 5 m window and the
derivatives of these rasters (slope, aspect, dx, and dy) with
a 25 m× 25 m window. Regression models were trained on
the lidar–GPR-estimated snow density using cross-validation
and were applied to the surrounding terrain. By retraining the
model architectures on random subsets of data, 50 model en-
sembles were generated and then averaged for both RF and
ANN regressions. The model hyperparameters were devel-
oped such that the variance of the predictions in pixels where
training data exists matches that of the predictions. The ap-
propriate hyperparameterization coincided with an R2 of ap-
proximately 0.8. An ML snow density ensemble (ρs,Ens) was
composed by averaging the MLR, RF, and ANN outputs. For
more detail on the model hyperparameterization and predic-
tor importance, see Appendix A.

2.6.2 Gaussian random field model

To serve as a baseline for model assessment, a Gaussian
random field snow density model was synthesized from the
statistics of the in situ density measurements and the correla-
tion length of snow density estimated via variogram analysis.
Provided that the empirical variogram function was avail-
able, a covariance matrix was determined between all pairs
of points in the ∼ 16 km2 domain. Using Cholesky decom-
position, the large covariance matrix was efficiently inverted
to determine a matrix of weights with the desired covariance
properties (Vecherin et al., 2022). The synthetic snow density
model was then generated by multiplying a normal random
vector with zero mean and the same standard deviation as the
in situ observations by the weighting matrix and adding the
mean value of the density observations.

2.7 Distributed snow water equivalent and uncertainty

Multiplying Hs,lidar by ρs,Ens yielded SWE (bs,lidar-Ens) dis-
tributed throughout the lidar domain. As a benchmark exam-
ple drawn from in situ sampling, we also distributed SWE us-
ing the average snow density (276 kgm−3), the average den-
sity of both open (280 kgm−3) and forest (257 kgm−3) ar-
eas, and the Gaussian random field model (bs,lidar-Rand). See
Appendix B3 for additional details. We upscaled bs,lidar-Ens
to 50 m resolution using the nearest-neighbor approximation
for comparison with the 50 m ASO SWE.

Using simple linear regression, we modeled the snow den-
sity errors for ρs,Ens. No correlation between error and snow
depth was found, and the RMSE (11 cm) was used to estimate
the random error. Using the random errors in snow depth,
linear errors in density, and linear error propagation, we es-
timated the uncertainty in bs,lidar-Ens to first order (Raleigh
and Small, 2017). Appendix B4 has further information on
SWE uncertainties regarding sampling errors estimated from
in situ measurements.
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Figure 2. Snow depths (1 m resolution) from the 1 February 2020 lidar flight. The western half of the domain is relatively unforested shrub
steppe (lakes are masked in black), while the eastern half has stands of dense forest (see Fig. 1). The color map is centered on the mean value.

Table 1. (a) Mean and standard deviation values of the snow-pit and probe-measured snow depths. (b) Estimates co-located by the lidar and
GPR techniques and gathered from within a 1 m radius of the in situ observations are compared to the in situ observations.

(a) Snow depth (cm)
method

All domain
µ± σ

Open domain
µ± σ

Forested domain
µ± σ

Snow pit (hs,Pit) 97± 17 99± 17 87± 13
Probe (hs,Probe) 95± 17 98± 16 84± 18

(b) Snow depth (cm)
method

All domain
µ± σ | R2

| RMSE | bias
Open domain
µ± σ | R2

| RMSE | bias
Forested domain
µ± σ | R2

| RMSE | bias

Lidar (Hs,lidar) 95± 16 | 0.61 | 11 | 0 99± 14 | 0.57 | 11 | 1 81± 16 | 0.60 | 12 | −4
GPR (hs,Ens-GPR) 97± 19 | 0.26 | 17 | 1 97± 19 | 0.26 | 17 | 1 99± 17 | 0.22 | 17 | −1

3 Results

3.1 Snow depth

The lidar-derived snow depths show an overall increasing
trend from west to east in addition to smaller-scale patterns
near vegetation, with deeper snow around the perimeter of
treed areas and shallow snow on the ground beneath tree
canopies (Fig. 2). This pattern is consistent with previous
snow depth distribution studies of Grand Mesa (e.g., Mc-
Grath et al., 2019). The mean lidar snow depth for the en-
tire domain is 92 cm with a standard deviation of 18 cm.
In open areas (Hveg< 0.5 m), the mean lidar snow depth is
96± 15 cm, while in the forest (Hveg≥ 0.5 m), the mean li-
dar snow depth is 79± 23 cm. In validation snow depth ob-
servations (hs,Pit and hs,Probe), the average snow depth over

the lidar domain is 95± 16 cm (R2
= 0.61, RMSE= 11 cm,

ME= 0 cm). Lidar- and GPR-estimated snow depths within
the open domain and those within the forested domain are
also compared to in situ snow depths (Table 1). In snow
depth comparisons between Hs,lidar, Hs,ASO, and Hs,Probe,
the two lidar processing methods showed similar correlations
(R2
≈ 0.6) and root-mean-square errors (RMSE≈ 12 cm).

However, Hs,ASO (86± 16 cm) underestimates snow depth
by 7 cm, while Hs,lidar (93± 16 cm) is unbiased on average
(Fig. S1 and Table S1 in the Supplement).

3.2 GPR travel time

Ground-penetrating radar travel-time data analyzed at
crossover locations exhibited a root-mean-square deviation
of 1 ns with a bias of 0 ns, and no systematic bias between
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Figure 3. A 900 m GPR transect with autopicks in magenta for (a) HH and (b) HV profiles of travel time and (c) the coherence of these
radargrams (Eqs. 1 and 2).

the two GPR instruments was found. Approximately 90 % of
the travel-time data applied in this work were automatically
determined using the coherence method, where less than 1 %
of the automatic picks required manual correction. To illus-
trate this, automated picks are overlaid on the radargrams of
a 900 m long transect in Fig. 3. The resulting TWT data pro-
duced from this method and used in this study are available
through the National Snow and Ice Data Center (Meehan,
2021).

3.3 Lidar–GPR-estimated density

The lidar–GPR-retrieved average snow density shows repeat-
able structure at the many crossover locations and greater
variability in the open terrain than areas sheltered by for-
est canopies (Fig. 4). The integrated lidar and GPR data re-
solve lower spatial frequency patterns than the snow pit ob-
servations, which are sparse and have limited spatial sup-
port. When compared to snow pit observations, the relative
RMSE among the 37 snow pits that are within 12.5 m of the
GPR transects is 35 kgm−3 or 13 % (Table 2). The ρs,Pit and
ρs,lidar-GPR data are both normally distributed, as evidenced
by a Z test (Appendix B3) with overlapping standard devia-
tions. The maximum upwind slope and wind factor evaluated

on GPR transects show the strongest correlation (R=−0.45
and R= 0.48, respectively) in the 225 and 220° directions
(Fig. S2 and Table S2).

3.4 Spatial variability of the lidar snow depth, GPR
travel time, density, and SWE

The generalized relative semi-variogram allows us to exam-
ine the differences in the length scales of variability among
depth, density, SWE, and TWT within the forested and open
areas of Grand Mesa (Fig. 5). Table S3 overviews the gener-
alized relative semi-variogram parameter estimates (nugget,
sill, and correlation length). TWT and SWE consistently
exhibited similar correlation lengths (∼ 100 m) and nugget
variability within the forested (∼ 35 %) and open (∼ 15 %)
areas. Snow depth and TWT reached comparable maximum
variabilities in open areas (∼ 25 %). Depth variability in the
forested areas (∼ 50 %) was greater than that of TWT and
SWE (∼ 45 %). The median distance between snow pits is
∼ 150 m, which indicates that average snow pit observations
are independent of each other and unable to resolve spatial
patterns at a finer scale.
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Figure 4. Bulk snow density along radar profiles, estimated by combining lidar snow depths with GPR TWTs. Average densities measured
in the 96 snow pits within the lidar boundary are overlaid as larger makers. Forested areas (grey) and lakes (black) are shown. The color map
is centered on the mean value.

3.5 Density modeled using machine-learning regression
and a Gaussian random field

Using supervised ML regression, three models were gener-
ated from lidar information (Fig. S3a–c). Using prior infor-
mation from the in situ snow pit observations a randomly
distributed density was synthesized (Fig. S3d). The mean of
the regression-based ensemble was taken to generate ρs,Ens
(Fig. 6). Generally, the regression models predict higher
snow density in the open and exposed areas than in areas
that are protected from the wind by trees. Each of these five
models are evaluated against ρs,lidar-GPR and ρs,Pit (Table 2).
The ML regression snow densities are generally uncorrelated
(R2
≈ 0.05) and have an RMSE of ∼ 10 % with snow pit ob-

servations. The spatial similarity of these models is presented
in Appendix A3.

3.6 Model representation of wind, terrain, and
vegetation effects

Maximized correlations between the terrain exposure param-
eters for all wind directions and the ML regression modeled
snow density agree with the median wind direction that is
able to transport snow (6.4 ms−1 at 200°; Fig. S2). The wind
speed and direction data from the Mesa West meteorolog-
ical station (Houser et al., 2022) are presented for all of the
time period from 1 October to 12 February (Fig. S4a) and the
time period where the wind was strong enough to transport
snow (Fig. S4b). Upwind-slope and wind-factor parameters

calculated for a 200° wind direction are provided for refer-
ence (Fig. S5). No correlation was evident between these
wind exposure parameters and the Gaussian-random-field-
distributed snow densities (Table S2).

3.7 Spatially distributed snow water equivalent

SWE distributed within the ∼ 16 km2 domain (Fig. 7) under-
estimated the snow pit average SWE by 20 mm (R2

= 0.57;
RMSE= 46 mm; Table 3; Fig. S6a–c). Upscaling bs,lidar-Ens
to 50 m resolution resulted in decorrelation (R2

= 0.03) and
increased error (RMSE= 60 mm), and the bias remained
nearly the same (−18 mm; Fig. S6d–f). ASO SWE (bs,ASO;
50 m resolution) had similar errors (RMSE= 57 mm) and
bias (−21 mm) and a low correlation (R2

= 0.1) to mea-
surements (Fig. S6g–i). The 50 m bs,lidar-Ens had a mean
SWE and standard deviation of 245± 33 mm, while bs,ASO
was 236± 45. The average snow density of bs,ASO was
274 kgm−3 (versus a value of 264 kgm−3 for ρs,Ens). Dis-
tributing SWE using the average measured value led to a
lower bias (−9 mm) and root-mean-square error (38 mm)
than bs,lidar-Ens. Using a constant density causes the SWE
spatial patterns and data correlation to be driven solely by
snow depth. Tested against the Gaussian-random-distributed
density (R2

= 0.49), the ML-regression-modeled densities
explained more variation in the distributed SWE estimates
(R2
= 0.56) – about as much as snow depth alone. For com-

parison, bs,lidar-Ens is presented alongside Hs,lidar and ρs,Ens
in Fig. S7.
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Table 2. (a) Mean and standard deviation for snow pit, lidar–GPR (Sects. 2.4.1 and 2.4.3), and modeled densities. Snow pit means and
standard deviations are estimated from all available data (N = 96 snow pits for the entire domain, N = 79 for the open domain, and N = 17
for the forested domain). (b) Comparison between snow pit densities and estimated densities. Statistics (R2, RMSE, and bias) are measured
from a subset of snow pits within 12.5 m of the GPR transects (N = 42 for all the domain, N = 36 for the open domain, and N = 6 for the
forested domain). (c) ρs,lidar-GPR-estimated densities are evaluated against modeled results.

(a) Snow density (kgm−3) All domain Open domain Forested domain
method µ± σ µ± σ µ± σ

Snow pit (ρs,Pit) 276± 21 280± 19 257± 20
Lidar–GPR (ρs,lidar-GPR) 271± 32 273± 32 246± 19
MLR model (ρs,MLR) 268± 21 273± 19 253± 18
RF model (ρs,RF) 269± 17 271± 18 262± 11
ANN model (ρs,ANN) 260± 25 266± 25 242± 14
ML ensemble (ρs,Ens) 264± 19 269± 19 248± 11
Random field (ρs,Rand) 275± 20 275± 20 274± 20

(b) Snow density All domain Open domain Forested domain
(ρs,Pit) R2

| RMSE | bias R2
| RMSE | bias R2

| RMSE | bias

Lidar–GPR (ρs,lidar-GPR) 0.02 | 35 | −5 0.01 | 37 | −8 0.39 | 23 | −13
MLR model (ρs,MLR) 0.05 | 26 | −9 0.01 | 26 | −10 0.0 | 26 | −2
RF model (ρs,RF) 0.01 | 26 | −8 0.0 | 27 | −10 0.0 | 22 | 4
ANN model (ρs,ANN) 0.06 | 30 | −11 0.03 | 31 | −12 0.0 | 23 | −8
ML ensemble (ρs,Ens) 0.05 | 27 | −11 0.02 | 28 | −12 0.0 | 22 | −4
Random field (ρs,Rand) 0.01 | 27 | −2 0.03 | 25 | −6 0.07 | 32 | 20

(c) Snow density All domain Open domain Forested domain
(ρs,lidar-GPR) R2

| RMSE | bias R2
| RMSE | bias R2

| RMSE | bias

MLR model (ρs,MLR) 0.27 | 27 | 0 0.25 | 27 | 0 0.04 | 22 | 5
RF model (ρs,RF) 0.80 | 15 | 0 0.79 | 15 | 0 0.76 | 10 | 1
ANN model (ρs,ANN) 0.79 | 15 | 0 0.78 | 15 | 0 0.69 | 11 | 0
ML ensemble (ρs,Ens) 0.72 | 18 | 0 0.71 | 18 | 0 0.59 | 13 | 2
Random field (ρs,Rand) 0.0 | 32 | 4 0.0 | 37 | 3 0.04 | 39 | 27

Figure 5. Generalized relative semi-variograms in (a) open and (b) forested areas for lidar snow depth, GPR TWT, average density retrieved
along the GPR transects, and the resulting SWE. Experimental variograms were fitted with an exponential model to determine the variogram
parameters. The larger markers represent the average nugget, sill, and correlation length estimated by Monte Carlo subsampling.
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Figure 6. Snow density distributed spatially using the ML regression ensemble average (bs,lidar-Ens). The color map is centered on the mean
value.

Figure 7. Spatially distributed snow water equivalent estimated using the regression ensemble mean density (bs,lidar-Ens) and lidar snow
depths (Hs,lidar). Forests and wind-scoured areas tend to have lower SWEs, and forest perimeters have higher SWEs. The meter-scale
stippled texture is the result of low-stature vegetation (Hveg< 0.5) and boulders, which both reduce the snow depth and decrease the snow
density. Large markers are SWE values measured at snow pits. Lakes are masked in black. The color map is centered on the mean value.
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Table 3. (a) Mean and standard deviation values of the snow water equivalent measured in snow pits and distributed by lidar snow depths
using an average snow pit density value (276 kgm−3), the average snow pit density in each respective domain (276, 280, 257 kgm−3), the
regression ensemble densities, and the random-field densities. In situ means and standard deviations are estimated from all available data
(N = 96 snow pits for the entire domain,N = 79 for the open domain, andN = 17 for the forested domain). (b) Comparison of SWE between
snow pit observations and distributed estimates obtained by multiplying lidar snow depths by the average density measured from snow pits
in the respective domain, the ML-ensemble-modeled densities, and the random-field-synthesized densities.

(a) Snow water equivalent (mm)
method

All domain
µ± σ

Open domain
µ± σ

Forested domain
µ± σ

Snow pit (bs,Pit) 269± 57 278± 55 225± 45
Average pit density (276 kgm−3) 255± 51 266± 41 219± 62
Domain pit avg. (276, 280, and 257) 255± 51 275± 37 197± 44
ML ensemble (bs,lidar-Ens) 245± 53 259± 41 198± 57
Random field (bs,lidar-Rand) 254± 54 265± 45 218± 64

(b) Snow water equivalent (mm)
method

All domain
R2
| RMSE | bias

Open domain
R2
| RMSE | Bias

Forested domain
R2
| RMSE | bias

Pit average (276, 280, and 257) 0.57 | 38 | −9 0.63 | 34 | −3 0.16 | 55 | −29
ML ensemble (bs,lidar-Ens) 0.56 | 46 | −20 0.61 | 42 | −18 0.19 | 56 | −27
Random field (bs,lidar-Rand) 0.49 | 42 | −10 0.52 | 39 | −10 0.10 | 55 | −14

3.8 Contributions of uncertainty

3.8.1 Lidar snow depth

Hs,lidar snow depths were computed from point cloud differ-
encing rather than raster differencing. The relative accuracy
of the snow depth measurement was estimated at 7 cm (based
on the maximum standard deviation of the point cloud differ-
encing method), which agrees well with previous lidar er-
ror assessments using this approach (Hojatimalekshah et al.,
2021). The absolute accuracy of the snow depths (11 cm)
was determined by comparison to validation snow depth
measurements, which shows 0 cm of bias on average over
all measurements (Table 1). On plowed roads, we observed
snow depths ranging between 0 and 5 cm (Fig. S8).

3.8.2 Lidar–GPR co-registration

We estimated the horizontal accuracy of the multi-
polarization GPR positions, which had a clear-sky view and
a GNSS receiver, at ± 1 m. The GPR system operated within
the forest stands had lower GPS fidelity, which we conserva-
tively estimate at ± 3 m. Ground validation showed less than
1 cm horizontal position uncertainty within the lidar point
cloud. We found that errors in the co-registration of the lidar
and GPR data are the leading source of error in the estimated
densities. The overall accuracy of the spatial registration be-
tween the lidar and GPR varies on the order of a few meters.

Sensitivity analysis showed how measurement errors
propagate into the lidar–GPR-measured snow density (Ap-
pendix B2). At the 1σ confidence interval, we found that
measurement errors are on the order of 10 cm for lidar and
1 ns for GPR, which may translate into errors in the density
estimate of 150 kg m−3 or greater. Variogram analyses show

that beyond 10 m, these errors are spatially uncorrelated and
can be treated with random noise filtering. After median fil-
tering and interpolating through outliers, error estimates re-
duced to 30 kgm−3 (Appendix B2).

3.8.3 Spatial and temporal support of density
measurements

Measurements accumulated over 12.5 m distance intro-
duce inherent variability on the order of 10 % (Sect. 3.4).
We found that the expected variability among co-located
ρs,lidar-GPR is approximately 2 %, which is consistent with
replicated in situ density observations (ρs,Pit). The average
density sampled from each of the snow pit columns (within
1 m) shows high repeatability, with a root-mean-square de-
viation of 2.5 %. We observed linear temporal trends in
snow densification of 0.07 kgm−3 h−1 in forested areas and
0.13 kgm−3 h−1 in open areas. These trends were removed
and were not considered within uncertainty analyses.

3.8.4 SWE uncertainty

The errors between Hs,lidar and hs,Probe are uncorrelated
when compared to Hs,lidar (R2

= 0.04). However, the errors
between ρs,Ens and ρs,Pit are negatively correlated against
ρs,Ens (R2

= 0.35, RMSE= 27 kgm−3). The errors in snow
depth and density are uncorrelated (R2

= 0.03), with negli-
gible covariance (Fig. S9). The distributed relative SWE un-
certainty is presented in Fig. S10 and is negatively correlated
with the distributed SWE (R2

= 0.57). The distributed ab-
solute SWE uncertainty (Fig. S11) is weakly positively cor-
related with bs,lidar-Ens (R2

= 0.22). The median SWE un-
certainty is 13 % (30 mm), which breaks down into 15 %
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(29 mm) median uncertainty in the forest and 13 % (31 mm)
median SWE uncertainty in the open areas. The relative un-
certainty is greater within forests due to the decreased to-
tal SWE within stands. Median snow density relative uncer-
tainty is 4 % (10 kg m−3). Median snow depth relative uncer-
tainty is 12 % (11 cm). Median lidar snow depth relative un-
certainty is 12 % (11 cm) in open areas, while in the forested
areas median depth uncertainty is 14 % (13 cm). Median
snow density uncertainty is 4 % in both open and forested ar-
eas, with more extreme density values having greater uncer-
tainty due to linear error modeling. Had snow density been
modeled as a random variable, the density would contribute
an error of 10 % (27 kgm−3), equating to 16 % uncertainty in
SWE on average.

4 Discussion

4.1 Multi-polarization GPR

This work advances the utility of GPR for seasonal snow ap-
plications by resolving the spatial snow density and SWE
through the integration of remotely sensed lidar and GPR
observations. Grand Mesa is a good site for testing our ap-
proach of combining lidar and GPR for density and SWE re-
trieval, yet it presents many challenges for GPR analysis be-
cause of the abrupt discontinuities along reflection horizons
due to vegetation and boulders on the ground surface. By ex-
ploring the effects of depolarization on L-band GPR signals,
we developed a new, automated GPR processing workflow
that reliably identifies the ground surface beneath the snow
cover. This advance encourages the collection of large multi-
polarization GPR datasets for operational use by removing
the subjectivity involved in the GPR post-processing and in-
terpretation and alleviating the labor of manually interpreting
radargrams through an objective function.

4.2 SWE uncertainty

Our work characterized the measurement uncertainties and
the resulting SWE uncertainty in pursuit of the goal of 10 %
uncertainty in global SWE estimation (National Academies
of Sciences, Engineering, and Medicine, 2018). We found
that GPR TWT and lidar snow depth contribute approxi-
mately equal uncertainties to the retrieved snow density. The
uncertainty in lidar snow depth tends to vary spatially and
is dependent on landscape characteristics such as slope and
vegetation (Deems et al., 2013). However, our evaluation of
snow depth in forested and open areas did not suggest that
lidar snow depth errors were greater beneath the tree canopy
(Table 1). The relative SWE uncertainty resembles the snow
depth distribution, with shallow snow within forest stands
yielding greater relative uncertainty. The absolute SWE un-
certainty resembles the snow density patterns, especially in
areas of anomalous snow density, where the modeled errors
are greatest. Our uncertainty analysis (Fig. S10) suggests

that, even when using innovatory measurements from air-
borne and ground-based sensors, 10 % uncertainty is difficult
to achieve. However, the joint lidar–GPR technique shows
promise for SWE remote-sensing calibration and validation
and demonstrates advantages over contemporary SWE re-
trievals at plot to forest-stand scales.

4.3 Geolocation errors in sensor fusion

Though the signals from lidar and GPR instruments are re-
peatable and coherent, the leading source of error in our
density measurement is spatial misalignments (potentially
sourced from geolocation inaccuracies, point cloud to raster
processing, and coordinate transformations) that are on the
scale of the 1 m resolution data products. In some loca-
tions, the co-registration between the two instruments may
be nearly exact, and the resulting error will be low. We found
by cross-correlating the GPR and co-located lidar snow depth
transects that misalignments of approximately 1–5 m are pos-
sible. Utilizing 3 m resolution lidar snow depths paired with
GPR TWTs for snow density retrieval did not reduce the er-
rors. To evaluate how spatial misalignments impact the train-
ing data, the predictor data, and the regression model output,
and to estimate the uncertainties introduced upon integrat-
ing the cross-platform sensor data, we created multiple sets
of training data by effectively perturbing where lidar–GPR
transects are aligned via cross-correlation lagging and intro-
ducing common practice mistakes in the sensor integration,
such as mixing the geographic coordinate system of the data
between NAD83 and WGS84. We found that perturbing the
sensor integration introduces less than 1 kgm−3 error into the
modeled density on average (up to 5 kgm−3 in forest stands),
that outlier filtering is robust to sensor integration errors, and
that this error is small relative to the overall SWE uncertainty.

4.4 Spatial variability in snow hydrological properties

Measurements retrieved from GPR profiles permitted us to
quantify the spatial length scales of variability in TWT, snow
depth, snow density, and SWE. We determined that density
measurements up to∼ 100 m apart are correlated. These find-
ings differ from a previous variogram analysis that found
correlation lengths for snow density of less than 10 m at a
smaller study site which limited the maximum lag separa-
tion to approximately 50 m (Yildiz et al., 2021). Variability
is study-site dependent (Bonnell et al., 2023), and it may
be that we have identified an additional longer, lower spa-
tial frequency scaling of snow density. As it is a corollary
to SWE, the two-way travel time in dry snow depends on
both snow depth and density. We found that TWT and SWE
consistently exhibited similar correlation lengths (∼ 100 m)
and nugget variabilities in the forested (∼ 35 %) and open
(∼ 15 %) areas. This finding supports TWT as an informer
of spatial SWE variability. We found that snow depth and
TWT reached comparable maximum variabilities in open ar-
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eas (∼ 25 %), while depth variability in the forested areas
(∼ 50 %) was greater than that of TWT and SWE (∼ 45 %).

In situ snow density observations have limited spatial sup-
port and tend to examine shorter length scales of variability
than are expressed in distributed models or retrievable by re-
mote sensing. As a random-sampling strategy was targeted
for the IOP, the median distance between snow pit observa-
tions in our study is beyond the length scale of variability
for snow density. The observations are therefore spatially un-
correlated. Snow density exhibited 4 % greater variability in
the open areas than in the forests, indicating that wind ex-
posure increased the variability and, conversely, shelter pro-
vided by terrain and vegetation tended to reduce the spatial
density variability. The larger (roughly 10 m) spatial support
of the lidar–GPR-estimated densities cannot directly sense
subpixel correlation lengths and potentially missed a 0–5 m
scale break that is more comparable to the spatial support of
in situ density observations. Differences between represen-
tative observation scales may explain the weak correlation
between the estimated density and the in situ measurements
(R2
= 0.01 in open areas and R2

= 0.39 in forest stands; Ta-
ble 2b). Our analysis of the correlation length of lidar snow
depths generally agrees with the scale breaks identified in
previous studies within forested and open areas (Deems et al.,
2006; Marshall et al., 2006; Trujillo et al., 2009). We ob-
served decreased correlation and increased error when up-
scaling the rasterized SWE to 50 m resolution, which sug-
gests that evaluating the 50 m SWE with sparse point mea-
surements may not be the most representative approach, and
a greater than 20 % error can be expected due to spatial vari-
ability.

4.5 Density modeling using ML regression

The ML regression models developed from the lidar and
GPR acquisitions during the SnowEx 2020 Grand Mesa IOP
will likely have only weak predictive capabilities at other
field sites, as they require model recalibration. The SWE pre-
dictions reported here represent a single snapshot in time of
snow depth and density. The patterns in depth, density, and
SWE may be characteristic for mid-winter dry-snow condi-
tions, but other times of the year may exhibit different spa-
tial patterns in all three (e.g., due to variable melt or liquid
water during ripening). For each regression model, we iden-
tified the most important lidar features that are used to dis-
tribute density, and we found dependencies of predictor im-
portance on model choice and architecture (Appendix A2).
Vegetation height and proximity to vegetation greater than
0.5 m in height appeared prominent in the three regression
models, whereas the dependence of snow density at Grand
Mesa on elevation, slope, and aspect was weakened. We used
a “kitchen-sink” approach to our regression modeling but
found comparable accuracy in models using fewer parame-
ters. Evaluations against snow pit density did not indicate an

obvious best model choice, as so we averaged the regression
models.

To capture the range of terrain features (i.e., elevation,
slope, aspect, and forest attributes) that influence snow densi-
fication, one field campaign in the western US collected den-
sity measurements from 300 snow cores at 10–20 m intervals
and 17 snow pits (Broxton et al., 2019). Based on these ob-
servations, bulk snow density was distributed at 1 m resolu-
tion using an ANN combined with the airborne-lidar-derived
snow depth to estimate the SWE. Broxton et al. (2019) high-
lighted the importance of representing the broader landscape
with distributed densities for estimating SWE by finding
∼ 30 % differences between the distributed estimates and ob-
servations from a nearby SNOTEL station. Elder et al. (1998)
used a simpler, three-feature (net radiation, slope, and eleva-
tion, with an intercept) MLR model that was trained on den-
sity observations of five snow pits and averages of five snow
core transects to predict the basin-wide average density and
SWE. More recently, a similar study used a sampling strat-
egy to represent unique classes of basin-wide physiography,
acquiring ∼ 1000 snow core observations and using MLR
and binary-classification tree models to distribute the density
based on elevation and incoming radiation (Wetlaufer et al.,
2016). The dependence of density on net solar radiation may
explain the good performance of these models, whereas ter-
rain parameters, such as slope and aspect, relate indirectly to
radiation.

We tested model sensitivity to training and learned how
many data are required for ML density estimation. Using ap-
proximately 30 000 lidar–GPR-derived densities (10 % of the
total) from random subsets, we obtained density models that
are statistically identical to those generated from the larger
dataset. Though random sampling is not a practical method
for GPR data acquisition and analysis, this exercise showed
that the amount of GPR information required to train the
model parameters is not as important as collecting data for
a variety of landscape and snow-cover characteristics.

4.6 Model representation of snow, terrain, vegetation,
and wind interactions

The lidar predictors were inspired by a theory that wind–
terrain–vegetation interactions govern the snow distribution
(Winstral et al., 2002). However, to keep the model design
innate to lidar information, we did not include wind data or
predictors such as the maximum upwind slope and wind fac-
tor. Instead, these wind parameters were utilized as a cor-
roboratory metric for explaining spatial patterns retrieved by
the lidar–GPR density and predicted in ML regression mod-
eling. We support the idea that spatial patterns are represen-
tative of snow exposure or shelter provided by the topogra-
phy and vegetation from the wind. We found that the pre-
vailing wind direction capable of transporting snow at Mesa
West generated the upwind-slope and wind-factor parameters
that agree most strongly with the retrieved and ML-modeled
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snow densities. A larger correlation is observed for the wind
factor than the maximum upwind slope, which suggests that
wind shelter by vegetation, not only terrain, has an impor-
tant quantifiable effect on snow density. The role of forest
vegetation in snow density is evinced in this topographically
simple environment because a large-scale topographic trend,
such as one driven by elevation or aspect, does not saturate
the signal of retrieved density. In validating wind effects on
density, our approach is an explanatory simplification of the
controls on snow density, which may be further impacted by
forest stands. Effects such as the blocking of shortwave and
emitted longwave radiation from forest canopies, the deliv-
ery of canopy-intercepted snow to the snowpack, or the loss
of snow mass (and thereby the altered compaction) due to the
sublimation of canopy-intercepted snow were unaccounted
for (Bonner et al., 2022).

4.7 Value of pit observations for distributed SWE

The Grand Mesa IOP was one of the largest campaigns to ex-
amine the spatiotemporal patterns of SWE, and it provided
a rich data source for snow density analysis. In most cir-
cumstances, only a few snow pits are dug, and uncertain-
ties arise from the spatial sampling of the underlying den-
sity distribution. The distribution of density on Grand Mesa
during the early February SnowEx 2020 campaign appears
to be a random normal variable with a mean and standard
deviation of 276± 21 kgm−3, despite differences of roughly
25 kgm−3 between the average densities of forested and open
areas. The large sample size of snow pits allowed us to accu-
rately quantify the mean snow density for distributed SWE
estimates. While the uncertainty in any measurement of den-
sity was found to be 2.5 % on average, we sought to quan-
tify the degree of uncertainty in the SWE distributed based
on the sampled population of snow density as a function
of sample size. Our analysis suggests that 10 spatially ran-
dom snow pit observations within the study domain are suf-
ficient to reduce the median uncertainty in distributed SWE
to within 10± 2 % (Appendix B4). Although the differences
are marginal, we have shown that, on average, this simpler
approach for distributing density represents the in situ obser-
vations more accurately than the SWE distributed using our
modeled estimates of density (Sect. 3.7), but it does not re-
solve any information about spatial patterns of snow density
and is therefore not useful for understanding density patterns
across the landscape. In situ snow campaigns targeting the
average SWE require far fewer pits than are needed to re-
solve the spatial patterns.

Snow pits are an invaluable source of calibration and val-
idation observations, but they do not adequately scale spa-
tially, they incur human errors and biases, and they are time
intensive to sample. For example, a team of two can fully
sample a 1 m deep SnowEx pit in 2 h, which, for the approxi-
mately 100 snow pits in the study area, amounts to∼ 400 h of
labor (excluding the time taken to quality control (QC), cu-

rate the snow pit logs, and travel to and from the field site).
The 160 km of GPR data used in this work required approxi-
mately 20 h to collect and an additional 20 h to QC the TWTs,
which amount to ∼ 40 h or roughly a 90 % reduction in field
labor, excluding the labor for the acquisition and processing
of the airborne lidar. We must note the greater financial cost
of obtaining GPR equipment and outsourcing airborne-lidar
data collection.

However, densities estimated from GPR TWTs and lidar
snow depths are objective, repeatable, and offer the spatial
continuity and areal coverage needed to provide insights into
the spatial patterns of density. The expense of acquiring air-
borne remote-sensing data is a crux of the technique, and
it may not be feasible to fly entire catchments across the
breadth of snow climates. Less-expensive techniques for es-
timating the SWE distribution, such as drone-based radar re-
trievals of dielectric permittivity (e.g., Valence et al., 2022),
and in situ measurement campaigns combined with ML mod-
els (e.g., Wetlaufer et al., 2016; Broxton et al., 2019) should
be utilized where appropriate and examined for physical rep-
resentativeness.

5 Conclusion

We developed an innovative approach to estimate SWE
across a ∼ 16 km2 domain by evaluating GPR travel times
for bulk snow density given a snow depth constraint and
then extrapolating across the domain using machine learn-
ing. Our automatic and objective technique for interpreting
radargrams reduces post-processing labor, which is a primary
hindrance to the widespread use of GPR in snow science. We
leveraged the lidar-estimated snow depth to solve for snow
density along ∼ 160 km of GPR transects. From these along-
track estimates, we calculated the length scales of variability
for depth, density, and SWE and found that snow pit ob-
servations that follow the SnowEx 2020 Grand Mesa IOP
sampling strategy are independent and unable to resolve spa-
tial patterns< 150 m in scale. Radar travel time informed the
dry-snow SWE variability better than either depth or density
independently. Snow density distributed by machine learning
revealed anomalies associated with localized terrain features
and forest stands that shelter the snowpack from wind den-
sification. Density spatial patterns show the best agreement
in the direction of prevailing winds strong enough to trans-
port snow, where roughly 60 % of the density variability in
our single midwinter survey can be accounted for using a
wind factor analysis. On average, distributed relative SWE
uncertainty was less than 15 %. While our analysis suggests
that measurements from 1 snow pit per km2 may reduce the
SWE uncertainty to within 10± 2 %, using such a sampling
strategy would not resolve the spatial patterns and variability
in snow properties. This pilot study provides a useful method
for resolving explanatory spatial patterns in snow depth, den-
sity, and water equivalent with comparable uncertainty to in
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situ methods but with spatial continuity at resolutions that
make the calibration or validation of airborne or spaceborne
radar remote-sensing retrievals of SWE practical. The spatial
data generated and the validation data acquired during the
NASA SnowEx 2020 IOP at Grand Mesa, Colorado, USA,
provide a core set of observables that continue to inform es-
sential snow research.

Appendix A

A1 Regression parameter optimization

A1.1 Multiple linear regression

The MLR model has the form

y = Xβ + ε, (A1)

where y is the observed density along the GPR transects, X is
a matrix with columns containing the normalized lidar pre-
dictors at the coordinates along the GPR transects, β is the
vector of the regression coefficients which we seek to esti-
mate, and ε represents the model residual. From the method
of least squares, the multiple linear regression coefficients
are estimated as

β = (XTX)−1XT y. (A2)

Using cross-validation to assess the model accuracy and sen-
sitivity, we estimated the MLR model parameters. We trained
the model with 1000 Monte Carlo simulations by randomly
sampling 90 % of the density observations and testing on the
remaining 10 %. Additionally, we repeated this process, but
we randomly sampled only 10 % of the data and tested on
the remaining 90 %. In doing so, we created two sets of pa-
rameters that robustly span the parameter space. Using these
regression coefficients, Eq. (A1) was computed to distribute
the predicted densities. The modeled densities are insensi-
tive to the training chosen for parameter estimation, as the
root-mean-square deviation between the two models is less
than 1 kgm−3.

A1.2 Random-forest and artificial-neural-network
regression

Whereas MLR models are relatively inflexible and model
overtraining is not a concern, techniques such as random-
forest and artificial-neural-network regression are highly
tuneable and may overfit the data. Hyperparameters deter-
mine the model architecture, which is often designed sub-
jectively or through an optimization process. The number of
trees and the minimum leaf size of a tree were the hyperpa-
rameters adjusted for the random-forest method. Neural net-
works offer a greater hyperparameter space, allowing for the
design of the number of and size of hidden layers, the neuron

activation function, and model regularization. The machine-
learning models were implemented using the MATLAB Re-
gression Learner application, where it was determined that
model hyperparameters which minimize the cross-validation
mean-squared error overfit the data. Model overfitting was
remedied by training ensembles of models with various hy-
perparameters. We calculated the averaged standard devi-
ations of density data for each ensemble predicted along
the GPR transects (σtrain) and elsewhere in the lidar domain
(σpred) and the coefficient of determination (R2) of the train-
ing data and prediction. The optimal hyperparameters which
do not overfit the data were then determined by minimizing
the objective function

ϕ =
1
R2

σpred

σtrain
. (A3)

The ratio of the standard deviations asserts that an appro-
priate model will have similar variance throughout the mod-
eled domain, as it penalizes overfitted data in the training
locations and rewards the model which explains the data ac-
curately. We found that the best model parameterizations that
are not overfitted had R2 ∼= 0.8 with RMSE∼= 15 kgm−3.
The corresponding hyperparameters for the random-forest
regression were 10 trees with a minimum leaf size of 200.
The ANN architecture had two hidden layers, each with
50 neurons and hyperbolic tangent activations, and the regu-
larization of λ= 0.015.

A2 Predictor importance

A2.1 Multiple linear regression

We applied the “kitchen-sink” approach because the MLR
model that was trained using the lidar–GPR densities, which
utilized every lidar predictor, exhibited the largest correlation
(R2
= 0.27) to the observations. However, various model pa-

rameterizations which utilized few parameters yielded equiv-
alent accuracies. To assess the importance of the individual
predictors, we assembled all combinations of 1 to 17 predic-
tor models, solved the regression for each combination, and
cross-validated against a test set of the lidar–GPR-estimated
densities. We considered the optimal models to be the top 1 %
of outputs, and we tracked which predictors composed each
of these models. We identified the relative importance of each
predictor (Fig. A1) by summing the number of appearances
for a given predictor and dividing by the number of optimal
models. Vegetation parameters and the east–west gradient of
the ground surface elevation were featured in all the most ac-
curate modeled predictions. Notably, snow density on Grand
Mesa exhibits a weak dependence on elevation, aspect, and
slope.

A2.2 Random-forest regression

The permutation accuracy importance was calculated to de-
termine which of the lidar-derived predictor variables are
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Figure A1. The relative importance of the following lidar-derived
predictors: Hs (snow depth), aspctHs (aspect of the snow depth),
slpHs (slope of the snow depth), dyHs (north component of the
snow depth gradient), dxHs (east component of the snow depth gra-
dient), Zs (snow surface elevation) and its derivatives, Zg (ground
elevation) and its derivatives, Hveg (vegetation height), and Sveg
(distance to vegetation with a height greater than 0.5 m). The pre-
dictor importance was determined from the top 1 % of the models.

Figure A2. Relative importance of lidar predictors calculated us-
ing the out-of-bag technique for random-forest regression. Uncer-
tainties were developed using random subsets of training data in a
Monte Carlo simulation.

most valuable in predicting the response. The permutation
importance was assessed by comparing the accuracy of the
prediction for a given learner (tree) and then randomly per-
muting the predictor variable of interest and recalculating
the prediction accuracy (Hapfelmeier et al., 2014). An im-
portant predictor will lose its predictive capability after a
random permutation, while an unimportant predictor will be
unaffected by the randomization. The prediction accuracy
was calculated using “out-of-bag” observations that were ex-
cluded from the population used to build the decision tree
(Breiman, 2001). The relative out-of-bag predictor impor-
tance for the ensemble of random forests generated using 10
trees with a minimum leaf size of 200 suggests that the slope
of the snow depth, snow surface elevation, ground surface
elevation, proximity to vegetation, and vegetation height are
the five leading predictors of snow density (Fig. A2).

Figure A3. Relative importance of lidar predictors within the ANN
comprising two hidden layers.

A2.3 Artificial-neural-network regression

Approaches which partition the weights between neural con-
nections to determine the relative importance of the predic-
tors within an ANN have a classically simple architecture,
with the network presenting one hidden layer (Goh, 1995).
This technique becomes obfuscated when applying an ANN
with multiple hidden layers. To determine the relative im-
portance of predictors within an ensemble of networks with
two hidden layers, we simply multiplied the matrices of the
weights connecting the input to the first hidden layer, the first
to the second hidden layer, and the second hidden layer to the
output. The greater the overall weighting that is assigned to
a predictor, the greater the importance of the feature. This
method suggests that vegetation height, proximity to vege-
tation, the north derivative of the ground surface elevations,
the slope of the ground elevations, and the east derivative of
the snow surface elevations are the five leading predictors of
snow density (Fig. A3).

A3 Model similarity intercomparison

Visual inspection reveals apparent structural similarity
among the three regression-based models. As a quantified
model intercomparison, we applied the coefficient of deter-
mination measured by Pearson correlation calculated on a
pixel-by-pixel basis. The structural similarity index (SSIM;
Wang et al., 2004) is a normalized value between 0 and 1
that is defined by the image luminance, contrast, and standard
deviation. We calculated the SSIM in 100 m radius kernels
(comparable to the estimated correlation length of the den-
sity) as a second means of determining the similarity among
the model ensembles. Capturing various structural length
scales allows an examination of the model similarity across
the correlation length. Table A1 overviews the R2 similar-
ity matrix. Nearly 50 % of the features observed in the MLR
model are explained within the RF model and vice versa. The
SSIM similarity matrix suggests that there is greater struc-
tural similarity with a larger spatial support (Table A1). The

https://doi.org/10.5194/tc-18-3253-2024 The Cryosphere, 18, 3253–3276, 2024



3270 T. G. Meehan et al.: Spatially distributed snow depth, density, and water equivalent

Table A1. Similarity matrix of R2 values for a pixel-by-pixel in-
tercomparison, and SSIM values for a model intercomparison esti-
mated over a 100 m radius (the approximate correlation length of
snow density).

R2, SSIM MLR RF ANN Random field

MLR 1, 1 – – –
RF 0.49, 0.61 1, 1 – –
ANN 0.31, 0.46 0.39, 0.52 1, 1 –
Random field 0, 0 0, 0 0, 0 1, 1

random-field-synthesized model exhibits no repeatable struc-
ture and is uncorrelated with the various regression models –
as expected, since it was randomly generated from the overall
snow density statistics only.

Appendix B

B1 Lidar point cloud processing

Point cloud processing was performed using the Multiscale
Model to Model Cloud Compare method (Lague et al., 2013).
The point cloud differencing method operates directly on
point cloud data by selecting core points from the point
clouds and distinguishing between the reference point cloud
(representing the ground) and the compared point cloud (de-
picting snow-covered surfaces). Utilizing a user-defined ra-
dius denoted as D, the algorithm fits a plane within a radius
of D/2 around each core point and determines the normal
vector of the plane. Subsequently, based on the core point
and the associated normal vector, the algorithm fits a cylin-
der with a radius of D/2, oriented along the normal vector,
with the cylinder axis passing through the core point. This
cylinder intersects both the reference (ground) and compared
(snow) point clouds, resulting in two sets of points. The al-
gorithm then projects the points within each set onto the nor-
mal vector and calculates the average and standard deviation
for each set. These values represent the average position and
roughness, respectively. In the presence of outliers, the algo-
rithm substitutes the mean and standard deviation with the
median and interquartile range, respectively. Ultimately, the
local distance between the average positions of the two sets
provides the snow depth. However, in cases where surfaces
are rough and the surface orientation does not align con-
sistently with the normal direction, the measured distance
(snow depth) uncertainty increases. This point cloud differ-
encing method could prove beneficial for flat areas, given the
effectiveness of the method on both rough and smooth sur-
faces.

The Cloud Compare Caractérisation de Nuages de Points
(CANUPO) method was employed to distinguish vegetation
from ground and snow returns following methods in Štroner
et al., (2021). This process involves a combination of train-

ing and classification which defines the dimensionality of
point clouds (1D for a line, 2D for a plane, or 3D for a vol-
ume) around specific points within a sphere at various scales
(radii). The expectation is that branches exhibit a more lin-
ear (1D) structure, leaves display 2D surfaces at small scales
(e.g., centimeter scales), and trees manifest in 3D at larger
scales (e.g., meter scales). Both snow and ground surfaces
tend to exhibit more of a 2D nature at both small and large
scales. The determination of dimensionality is based on prin-
cipal component analysis within the algorithm. The combi-
nation of point dimensionality at different scales is used to
define object categories and, in this instance, remove vegeta-
tion.

B2 Error analysis of lidar–GPR-estimated density

We conducted a sensitivity analysis to evaluate how the er-
rors in radar travel time and lidar snow depth affect the esti-
mated snow density. This involved establishing a level curve
through the average snow values of the study area (mean
density 276 kgm−3, mean TWT 8 ns, and mean snow depth
96 cm) and applying perturbations to evaluate the density er-
ror (Fig. B1). Perturbations of up to ± 1 ns were added to the
TWT and those of ± 15 cm were added to the depth. After
the TWT and depth perturbations were applied, the densities
were evaluated, and the mean (276 kgm−3) was subtracted
from this result to measure the density perturbations. The er-
ror bars in Fig. B1 represent the lidar root-mean-square devi-
ation evaluated by co-located depth probing (11 cm) and the
RMSD of the GPR TWT crossovers (0.9 ns). At the 1σ level,
errors of approximately ± 150 kgm−3 can be expected from
this sensor integration method.

The combined measurement and geolocation errors in
lidar-derived snow depths and GPR TWTs may translate into
errors in the retrieved density that are larger than the range
of densities observed in the snow pits. Upon filtering out out-
liers, the random error reduced to ± 30 kgm−3 and a mean-
ingful density signal was retrieved. We chose the interquar-
tile range of the lidar–GPR-retrieved densities as the thresh-
old for determining outliers because the 25th and 75th per-
centiles envelop the range of snow densities observed in the
snow pits. We then applied a 2D median window with a
12.5 m radius (chosen to extend beyond the correlation length
of the errors) to smooth the densities and interpolate those at
the outlying locations.

Although we only included GPR observations within
100 h of the 1 February lidar flight, seeking a potential bias
related to the effects of densification and redistribution, we
regressed ρs,lidar-GPR against hours elapsed prior to and af-
ter 1 February. Separate linear trends were identified in the
forested and open regions traversed with the GPR. As con-
ducted for the snow pit density observations, the trends were
centered on 1 February and removed from the retrieved den-
sity observations.
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Figure B1. Perturbations were added to the mean values of 8 ns for
TWT and 96 cm for depth, and then the density was evaluated to
estimate potential errors resulting from sensor integration (colored
area and contours). The error bars represent the RMSE of the lidar
(11 cm), evaluated by probing, and the RMSD of the GPR TWT
crossovers (0.9 ns). At 1 standard deviation, combined snow density
errors of ± 150 kgm−3 can be expected from sensor integration,
which are reduced to within ± 30 kgm−3 by outlier filtering.

B3 Statistics of the in situ, lidar–GPR-retrieved, and
modeled snow densities

To show that the retrieved and modeled densities are within
the range of measurements observed in the snow pits, we
provide the distributions of these three datasets for the en-
tire study area domain in Fig. B2. The means of the distribu-
tions overlap within the standard deviations of the datasets.
The lidar–GPR-retrieved densities suggest a broader distri-
bution of densities than those observed in the pits or mod-
eled. Sampling biases may explain the small disagreement
between mean values. The sample size and spatial represen-
tation of each dataset vary by many orders of magnitude. The
distributions are unequally represented by vegetation class,
as 18 % of the snow pits (17 of 96), 23 % of the modeled do-
main (3 665 343 of 15 753 500), and 7 % of the GPR transects
(19 978 of 278 627) were located within the forest stands.
However, other than a bias of - 10 kgm−3, the distribution
of the modeled estimates closely resembles that of the snow
pit measurements. Z tests confirm that the snow density data
are normally distributed about the mean and the standard de-
viations are listed with high confidence.

B4 Sample uncertainty of density and SWE

To estimate the uncertainty in average density due to the sam-
ple size and to propagate this uncertainty in terms of the
SWE, we conducted Monte Carlo simulations by randomly

Figure B2. Histograms of the snow-pit-measured, lidar–GPR-
retrieved, and regression-model ensemble densities.

subsampling density observations. Utilizing 1000 Monte
Carlo realizations as a function of sample size, we incre-
mentally increased the number of randomly sampled snow
pits to estimate the mean and the standard deviation of the
distributed average snow density (Fig. B3). We set the sam-
pled standard deviation as the spatial uncertainty in density
and summed in quadrature the distributed errors in lidar snow
depth (as described in Sect. 2.7) to propagate the SWE un-
certainty (Fig. B2). Our analysis suggests that 10 snow pit
observations are sufficient to reduce the median uncertainty
in SWE to within 10± 2 %.

Appendix C

C1 Maximum upwind slope and wind factor

To infer the physical bases underlying the snow density pat-
terns of ρs,Ens, we computed two parameters (the maximum
upwind slope and wind factor; Winstral et al., 2002) from
the 1–2 February lidar-derived snow surface elevations. The
maximum upwind slope characterizes the degree of wind ex-
posure for a given pixel. A wind-sheltered pixel has a posi-
tive slope, indicating that higher terrain exists upwind of the
pixel. Conversely, wind-exposed terrain has a negative slope
value, with lower-elevation terrain in the upwind direction.
The maximum upwind slope parameter (Sx) was calculated
for each azimuth from 0 to 355° in 5° increments averaged
over ± 15-degree overlapping bins (Winstral et al., 2002). A
search distance of 25 m was applied in the calculation of the
local Sx, while a 250 m distance was used to calculate the
outlier length scale Sx between 25 and 250 m from the pixel.
The local and outlying Sx parameters were differenced to cal-
culate the slope break parameter, Sb (Winstral et al., 2002).
Because pixels with high wind exposure have negative Sx
values, and we hypothesize that wind-exposed terrain will
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Figure B3. Monte Carlo uncertainty analysis for (a) mean snow density, (b) the standard deviation of the snow density, and (c) the propagated
SWE uncertainty as functions of sample size.

have greater snow density (e.g., due to the formation of wind
slabs), the wind direction expressing the largest negative cor-
relation was recognized as the best explanation of the density
patterns determined by Sx.

The wind-factor parameter determines the degree of wind
exposure or shelter for a given pixel, based on Sx, Sb, veg-
etation proximity, and the average scalar multiple by which
wintertime winds at the MW station exceeded those at the
MM station (Winstral et al., 2002). The value of 2.18 deter-
mined from the wind speed data at MW and MM is in close
agreement with the value of 2.3 determined by Winstral et al.
(2002) and was applied to compute the wind factor by in-
versely rescaling Sx to the range between 1 and 2.18, where
larger values indicate more wind exposure. Vegetated wind-
sheltered zones were identified as pixels within a 3 m buffer
of lidar vegetation greater than 0.5 m in height. The wind fac-
tors of sheltered vegetated areas and regions of Sb which ex-
ceeded the 97.5th percentile were arbitrarily reduced by 10 %
to enhance the effective wind shelter provided by vegetation.
Because the wind factor was inversely rescaled, the wind di-
rection expressing the largest positive correlation with the
snow density was recognized as being the best explanation
of the density patterns determined by the wind factor param-
eter.

Code availability. The processing software developed
for the multi-polarization GPR analysis is available at
https://doi.org/10.5281/zenodo.11521496 (Meehan, 2024).

Data availability. Snow pit observations
(https://doi.org/10.5067/DUD2VZEVBJ7S, Vuyovich et al., 2021),
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quired during the SnowEx 2020 Grand Mesa IOP are pub-

licly available through the National Snow and Ice Data
Center (NSIDC). Data products resulting from this work
– the lidar–GPR-estimated density observations, the lidar-
estimated model predictors, the modeled snow density, the
modeled SWE (https://doi.org/10.5067/LANQ53RTJ2DR,
Meehan and Hojatimalekshah, 2024a), and the lidar snow
depth rasters (https://doi.org/10.5067/M9TPF6NWL53K, Mee-
han and Hojatimalekshah, 2024b) – and ASO snow depth
(https://doi.org/10.5067/KIE9QNVG7HP0, Painter, 2018a) and
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