Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2429-2024
https://doi.org/10.5194/tc-18-2429-2024
Research article
 | 
16 May 2024
Research article |  | 16 May 2024

A large-scale high-resolution numerical model for sea-ice fragmentation dynamics

Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko

Related authors

Three-dimensional discrete element simulations on pressure ridge formation
Marek Muchow and Arttu Polojärvi
EGUsphere, https://doi.org/10.5194/egusphere-2024-831,https://doi.org/10.5194/egusphere-2024-831, 2024
Short summary
Baltic Sea freshwater content
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023,https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Oceanographic preconditions for planning seawater heat pumps in the Baltic Sea – an example from the Tallinn Bay, Gulf of Finland
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet Discuss., https://doi.org/10.5194/sp-2023-21,https://doi.org/10.5194/sp-2023-21, 2023
Revised manuscript accepted for SP
Short summary
Climate change in the Baltic Sea region: a summary
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022,https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Natural hazards and extreme events in the Baltic Sea region
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022,https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Suitability of CICE Sea Ice Model for Seasonal Prediction and Positive Impact of CryoSat-2 Ice Thickness Initialization
Shan Sun and Amy Solomon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-116,https://doi.org/10.5194/tc-2023-116, 2023
Revised manuscript accepted for TC
Short summary

Cited articles

Acheson, D. J.: Elementary Fluid Dynamics, Oxford University Press, 205, ISBN 0-19-859679-0, 1990. a
Astrom, J.: A small portion of a Kvarken simulation: A large-scale high-resolution numerical model for sea-ice fragmentation dynamics, Zenodo [video], https://doi.org/10.5281/zenodo.10471034, 2024. a
Åström, J. A. and Benn, D. I.: Effective rheology across the fragmentation transition for sea ice and ice shelves, Geophys. Res. Lett., 46, 13099–13106, 2019. 
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a
Åström, J. A., Cook, S., Enderlin, E. M., Sutherland, D. A., Mazur, A., and Glasser, N.: Fragmentation theory reveals processes controlling iceberg size distributions, J. Glaciol., 67, 603–612, 2021. a, b
Download
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.