Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1863-2024
https://doi.org/10.5194/tc-18-1863-2024
Research article
 | 
22 Apr 2024
Research article |  | 22 Apr 2024

Geometric amplification and suppression of ice-shelf basal melt in West Antarctica

Jan De Rydt and Kaitlin Naughten

Related authors

Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021,https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021,https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Drivers of Pine Island Glacier speed-up between 1996 and 2016
Jan De Rydt, Ronja Reese, Fernando S. Paolo, and G. Hilmar Gudmundsson
The Cryosphere, 15, 113–132, https://doi.org/10.5194/tc-15-113-2021,https://doi.org/10.5194/tc-15-113-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
A facet-based numerical model to retrieve ice sheet topography from Sentinel-3 altimetry
Jérémie Aublanc, François Boy, Franck Borde, and Pierre Féménias
The Cryosphere, 19, 1937–1954, https://doi.org/10.5194/tc-19-1937-2025,https://doi.org/10.5194/tc-19-1937-2025, 2025
Short summary
Current reversal leads to regime change in the Amery Ice Shelf cavity in the 21st century
Jing Jin, Antony J. Payne, and Christopher Y. S. Bull
The Cryosphere, 19, 1873–1896, https://doi.org/10.5194/tc-19-1873-2025,https://doi.org/10.5194/tc-19-1873-2025, 2025
Short summary
Speed-up, slowdown, and redirection of ice flow on neighbouring ice streams in the Pope, Smith, and Kohler region of West Antarctica
Heather L. Selley, Anna E. Hogg, Benjamin J. Davison, Pierre Dutrieux, and Thomas Slater
The Cryosphere, 19, 1725–1738, https://doi.org/10.5194/tc-19-1725-2025,https://doi.org/10.5194/tc-19-1725-2025, 2025
Short summary
Changes in Antarctic surface conditions and potential for ice shelf hydrofracturing from 1850 to 2200
Nicolas C. Jourdain, Charles Amory, Christoph Kittel, and Gaël Durand
The Cryosphere, 19, 1641–1674, https://doi.org/10.5194/tc-19-1641-2025,https://doi.org/10.5194/tc-19-1641-2025, 2025
Short summary
A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S
Kaian Shahateet, Johannes J. Fürst, Francisco Navarro, Thorsten Seehaus, Daniel Farinotti, and Matthias Braun
The Cryosphere, 19, 1577–1597, https://doi.org/10.5194/tc-19-1577-2025,https://doi.org/10.5194/tc-19-1577-2025, 2025
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2018. a, b, c, d
Arthern, R. J. and Williams, C. R.: The sensitivity of West Antarctica to the submarine melting feedback, Geophys. Res. Lett., 44, 2352–2359, https://doi.org/10.1002/2017GL072514, 2017. a, b
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009. a
Barnes, J. M., Dias dos Santos, T., Goldberg, D., Gudmundsson, G. H., Morlighem, M., and De Rydt, J.: The transferability of adjoint inversion products between different ice flow models, The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021, 2021. a
Bradley, A. T., Bett, D. T., Dutrieux, P., De Rydt, J., and Holland, P. R.: The Influence of Pine Island Ice Shelf Calving on Basal Melting, J. Geophys. Res.-Oceans, 127, e2022JC018621, https://doi.org/10.1029/2022JC018621, 2022. a, b, c, d
Download
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Share