Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1863-2024
https://doi.org/10.5194/tc-18-1863-2024
Research article
 | 
22 Apr 2024
Research article |  | 22 Apr 2024

Geometric amplification and suppression of ice-shelf basal melt in West Antarctica

Jan De Rydt and Kaitlin Naughten

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1587', Anonymous Referee #1, 23 Nov 2023
  • RC2: 'Comment on egusphere-2023-1587', Anonymous Referee #2, 14 Dec 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (20 Feb 2024) by Ginny Catania
AR by Jan De Rydt on behalf of the Authors (20 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (25 Feb 2024) by Ginny Catania
AR by Jan De Rydt on behalf of the Authors (04 Mar 2024)  Manuscript 
Download
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.