Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East Antarctica
Department of Geography, Durham University, Durham, DH1 3LE, UK
current address: School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK
Chris R. Stokes
Department of Geography, Durham University, Durham, DH1 3LE, UK
Stewart S. R. Jamieson
Department of Geography, Durham University, Durham, DH1 3LE, UK
Dana Floricioiu
Remote Sensing Technology Institute, German Aerospace Center, 82234 Weßling, Germany
Lukas Krieger
Remote Sensing Technology Institute, German Aerospace Center, 82234 Weßling, Germany
Related authors
No articles found.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024, https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Short summary
We use the ice surface expression of the Gamburtsev Subglacial Mountains in East Antarctica to map the horizontal pattern of valleys and ridges in finer detail than possible from previous methods. In upland areas, valleys are spaced much less than 5 km apart, with consequences for the distribution of melting at the bed and hence the likelihood of ancient ice being preserved. Automated mapping techniques were tested alongside manual approaches, with a hybrid approach recommended for future work.
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024, https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Short summary
This study uses airborne radar data and satellite imagery to map mountainous topography hidden beneath the Greenland Ice Sheet. We find that the landscape records the former extent and configuration of ice masses that were restricted to areas of high topography. Computer models of ice flow indicate that valley glaciers eroded this landscape millions of years ago when local air temperatures were at least 4 °C higher than today and Greenland’s ice volume was < 10 % of that of the modern ice sheet.
Sindhu Ramanath Tarekere, Lukas Krieger, Dana Floricioiu, and Konrad Heidler
EGUsphere, https://doi.org/10.5194/egusphere-2024-223, https://doi.org/10.5194/egusphere-2024-223, 2024
Short summary
Short summary
Grounding lines are geophysical features that divide ice masses on the bedrock and floating ice shelves. Their accurate location is required for calculating the mass balance of ice sheets and glaciers in Antarctica and Greenland. Human experts still manually detect them in satellite-based interferometric radar images, which is inefficient given the growing volume of data. We have developed an artificial intelligence-based automatic detection algorithm to generate Antarctic-wide grounding lines.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
EGUsphere, https://doi.org/10.5194/egusphere-2024-137, https://doi.org/10.5194/egusphere-2024-137, 2024
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes, and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically-driven changes in the ice sheet surface slope.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Melanie Marochov, Chris R. Stokes, and Patrice E. Carbonneau
The Cryosphere, 15, 5041–5059, https://doi.org/10.5194/tc-15-5041-2021, https://doi.org/10.5194/tc-15-5041-2021, 2021
Short summary
Short summary
Research into the use of deep learning for pixel-level classification of landscapes containing marine-terminating glaciers is lacking. We adapt a novel and transferable deep learning workflow to classify satellite imagery containing marine-terminating outlet glaciers in Greenland. Our workflow achieves high accuracy and mimics human visual performance, potentially providing a useful tool to monitor glacier change and further understand the impacts of climate change in complex glacial settings.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Bertie W. J. Miles, Jim R. Jordan, Chris R. Stokes, Stewart S. R. Jamieson, G. Hilmar Gudmundsson, and Adrian Jenkins
The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, https://doi.org/10.5194/tc-15-663-2021, 2021
Short summary
Short summary
We provide a historical overview of changes in Denman Glacier's flow speed, structure and calving events since the 1960s. Based on these observations, we perform a series of numerical modelling experiments to determine the likely cause of Denman's acceleration since the 1970s. We show that grounding line retreat, ice shelf thinning and the detachment of Denman's ice tongue from a pinning point are the most likely causes of the observed acceleration.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
E. Johnson, D. Floricioiu, E. Schwalbe, R. Koschitzki, H.-G. Maas, C. Cardenas, and G. Casassa
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 125–127, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-125-2020, 2020
L. Krieger, E. Johnson, and D. Floricioiu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 133–136, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-133-2020, 2020
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Wael Abdel Jaber, Helmut Rott, Dana Floricioiu, Jan Wuite, and Nuno Miranda
The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, https://doi.org/10.5194/tc-13-2511-2019, 2019
Short summary
Short summary
We use topographic maps from two radar remote-sensing missions to map surface elevation changes of the northern and southern Patagonian ice fields (NPI and SPI) for two epochs (2000–2012 and 2012–2016). We find a heterogeneous pattern of thinning within the ice fields and a varying temporal trend, which may be explained by complex interdependence between surface mass balance and effects of flow dynamics. The contribution to sea level rise amounts to 0.05 mm a−1 for both ice fields for 2000–2016.
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018, https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Short summary
Floating ice tongues in Greenland buttress inland ice, and their removal could accelerate ice flow. Petermann Glacier recently lost large sections of its ice tongue, but there was little glacier acceleration. Here, we assess the impact of future calving events on ice speeds. We find that removing the lower portions of the ice tongue does not accelerate flow. However, future iceberg calving closer to the grounding line could accelerate ice flow and increase ice discharge and sea level rise.
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
Short summary
The dynamic behaviour (i.e. acceleration and retreat) of outlet glaciers in northern Greenland remains understudied. Here, we provide a new long-term (68-year) record of terminus change. Overall, recent retreat rates (1995–2015) are higher than the last 47 years. Despite region-wide retreat, we found disparities in dynamic behaviour depending on terminus type; grounded glaciers accelerated and thinned following retreat, while glaciers with floating ice tongues were insensitive to recent retreat.
Bertie W. J. Miles, Chris R. Stokes, and Stewart S. R. Jamieson
The Cryosphere, 12, 3123–3136, https://doi.org/10.5194/tc-12-3123-2018, https://doi.org/10.5194/tc-12-3123-2018, 2018
Short summary
Short summary
Cook Glacier, as one of the largest in East Antarctica, may have made significant contributions to sea level during past warm periods. However, despite its potential importance there have been no long-term observations of its velocity. Here, through estimating velocity and ice front position from satellite imagery and aerial photography we show that there have been large previously undocumented changes in the velocity of Cook Glacier in response to ice shelf loss and a subglacial drainage event.
Wolfgang Rack, Matt A. King, Oliver J. Marsh, Christian T. Wild, and Dana Floricioiu
The Cryosphere, 11, 2481–2490, https://doi.org/10.5194/tc-11-2481-2017, https://doi.org/10.5194/tc-11-2481-2017, 2017
Short summary
Short summary
Predicting changes of the Antarctic Ice Sheet involves fully understanding ice dynamics at the transition between grounded and floating ice. We map tidal bending of ice by satellite using InSAR, and we use precise GPS measurements with assumptions of tidal elastic bending to better interpret the satellite signal. It allows us to better define the grounding-line position and to refine the shape of tidal flexure profiles.
J. Zhao and D. Floricioiu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W7, 1593–1600, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, 2017
Bertie W. J. Miles, Chris R. Stokes, and Stewart S. R. Jamieson
The Cryosphere, 11, 427–442, https://doi.org/10.5194/tc-11-427-2017, https://doi.org/10.5194/tc-11-427-2017, 2017
Short summary
Short summary
We observe a large simultaneous calving event in Porpoise Bay, East Antarctica, where ~ 2900 km2 of ice was removed from floating glacier tongues between January and April 2007. This event was caused by the break-up of the multi-year sea ice usually occupies the bay, which we link to climatic forcing. We also observe a similar large calving event in March 2016 (~ 2200 km2), which we link to the long-term calving cycle of Holmes (West) Glacier.
O. J. Marsh, W. Rack, D. Floricioiu, N. R. Golledge, and W. Lawson
The Cryosphere, 7, 1375–1384, https://doi.org/10.5194/tc-7-1375-2013, https://doi.org/10.5194/tc-7-1375-2013, 2013
Cited articles
Amundson, J., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and Motyka,
R.: Ice mélange dynamics and implications for terminus stability,
Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115,
F01005, https://doi.org/10.1029/2009JF001405, 2010.
Arthur, J., Stokes, C., Jamieson, S., Miles, B., Carr, R., and Leeson, A.: The
triggers of the disaggregation of Voyeykov Ice Shelf (2007), Wilkes Land,
East Antarctica, and its subsequent evolution, J. Glaciol., 67,
265, 933–951, https:// doi.org/10.1017/jog.2021.45, 2021.
Australian Antarctic Division:
https://www.antarctica.gov.au/nuyina/stories/2022/rsv-nuyina-discovers-deep-glacial-canyon/,
last access: 21 January 2022.
Berger, S., Drews, R., Helm, V., Sun, S., and Pattyn, F.: Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica, The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, 2017.
Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S., and Crawford, A.: Brief communication: Thwaites Glacier cavity evolution, The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, 2021.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Bindschadler, R. and Choi, H.: High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet. U.S. Antarctic Program (USAP) Data Center [data set] https://doi.org/10.7265/N56T0JK2, 2011.
Black, T. E. and Joughin, I.: Multi-decadal retreat of marine-terminating outlet glaciers in northwest and central-west Greenland, The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022, 2022.
Chen, X., Shearer, P. M., Walter, F., and Fricker, H. A.: Seventeen
Antarctic seismic events detected by global surface waves and a possible
link to calving events from satellite images, J. Geophys.
Res.-Sol. Ea., 116, 1–16, https://doi.org/10.1029/2011JB008262,
2011.
Christianson, K., Bushuk, M., Dutrieux, P., Parizek, B. R., Joughin, I. R.,
Alley, R. B., Shean, D. E., Abrahamsen, E. P., Anandakrishnan, S., Heywood,
K. J., Kim, T.-W., Lee, S. H., Nicholls, K., Stanton, T., Truffer, M.,
Webber, B. G. M., Jenkins, A., Jacobs, S., Bindschadler, R., and Holland, D.
M.: Sensitivity of Pine Island Glacier to observed ocean forcing: PIG
response to ocean forcing, Geophys. Res. Lett., 43, 10817–10825,
https://doi.org/10.1002/2016GL070500, 2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., and Muto,
A.: Four-decade record of pervasive grounding line retreat along the
Bellingshausen margin of West Antarctica, Geophys. Res. Lett., 43,
5741–5749, https://doi.org/10.1002/2016GL068972, 2016.
Christie, F. D. W., Benham, T., Batchelor, C., Rack, W., Montelli, A.,
and Dowdeswell, J.: Antarctic ice-shelf advance driven by anomalous atmospheric
and sea-ice circulation, Nat. Geosci., 15, 356–362,
https://doi.org/10.1038/s41561-022-00938-x, 2022.
Commonwealth of Australia: RSV Nuyina Voyage 2 2021-22 Voyage Data, Southern
Ocean, Antarctica, Version 1. Australian Antarctic Data Centre [data set],
https://doi.org/10.26179/zz6j-e834, 2022.
Davis, E. R., Jones, D. J., Morgan, V. I., and Young, N. W.: A Survey of the
Vanderford and Adams Glaciers in East Antarctica (Abstract), Ann.
Glaciol., 8, 197–197, https://doi.org/10.3189/S0260305500001476, 1986.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
EarthExplorer: United States Geological Survey, available at: https://earthexplorer.usgs.gov/, last access: April 2022.
ENVEO.: ESA Antarctic Ice Sheet Climate Change Initiative 60 (Antarctic_Ice_Sheet_cci): Antarctic Ice Sheet monthly velocity from 2017 to 2020, derived from Sentinel-1, v1. NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/00fe090efc58446e8980992a617f632f, 2021.
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini,
O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.:
Retreat of Pine Island Glacier controlled by marine ice-sheet instability,
Nat. Clim. Change, 4, 117–121, https://doi.org/10.1038/nclimate2094,
2014.
Feldmann, J. and Levermann, A.: Collapse of the West Antarctic Ice Sheet
after local destabilization of the Amundsen Basin, P. Natl. Acad. Sci. USA, 112, 14191–14196,
https://doi.org/10.1073/pnas.1512482112, 2015.
Flament, T. and Rémy, F.: Dynamic thinning of Antarctic glaciers from
along-track repeat radar altimetry, J. Glaciol., 58, 830–840,
https://doi.org/10.3189/2012JoG11J118, 2012.
Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M., and Heil, P.: Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf, The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, 2021.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and
Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East
Antarctica using InSAR, MODIS and ICESat, Antarc. Sci., 21, 515–532,
https://doi.org/10.1017/S095410200999023X, 2009.
Friedl, P., Weiser, F., Fluhrer, A., and Braun, M.: Remote sensing of glacier
and ice sheet grounding lines: A review, Earth-Sci. Rev., 201, 102948,
https://doi.org/10.1016/j.earscirev.2019.102948, 2020.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912,
2016.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A., Fahnestock, M., and Scambos, T.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities: Version 1. National Snow and Ice Data Center [data set], https://doi.org/10.5067/6II6VW8LLWJ7, 2022.
Glasser, N. F., Scambos, T. A., Bohlander, J., Truffer, M., Pettit, E., and
Davies, B. J.: From ice-shelf tributary to tidewater glacier: continued
rapid recession, acceleration and thinning of Röhss Glacier following
the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula,
J. Glaciol., 57, 397–406,
https://doi.org/10.3189/002214311796905578, 2011.
Goldstein, R. M., Engelhardt, H., Kamb, B., and Frolich, R. M.: Satellite
Radar Interferometry for Monitoring Ice Sheet Motion: Application to an
Antarctic Ice Stream, Science, 262, 1525–1530,
https://doi.org/10.1126/science.262.5139.1525, 1993.
Gomez-Fell, R., Rack, W., Purdie, H., and Marsh, O.: Parker Ice Tongue collapse,
Antarctica, triggered by loss of stabilizing land-fast sea ice, Geophys. Res. Lett., 49, e2021GL096156, https://doi.org/10.1029/2021GL096156,
2022.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van
Ommen, T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten
Glacier in East Antarctica, Nat. Geosci., 8, 294–298,
https://doi.org/10.1038/ngeo2388, 2015.
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and van
Wijk, E.: Wind causes Totten Ice Shelf melt and acceleration, Sci.
Adv., 3, e1701681, https://doi.org/10.1126/sciadv.1701681, 2017.
Gwyther, D. E., Galton-Fenzi, B. K., Hunter, J. R., and Roberts, J. L.: Simulated melt rates for the Totten and Dalton ice shelves, Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, 2014.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MODIS
Mosaic of Antarctica 2003–2004 (MOA2004) Image Map, Version 1. NASA
National Snow and Ice Data Center Distributed Active Archive Center [data
set], https://doi.org/10.5067/68TBT0CGJSOJ, 2005.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MODIS
Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 1. NASA
National Snow and Ice Data Center Distributed Active Archive Center [data
set], https://doi.org/10.5067/4ZL43A4619AF, 2014.
Haran, T., Linger, M., Bohlander, J., Fahnestock, M., Painter, T., and Scambos,
T.: MEaSUREs MODIS Mosaic of Antarctica 2013–2014 (MOA2014) Image Map,
Version 1. NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/RNF17BP824UM, 2018.
Harig, C. and Simons, F. J.: Accelerated West Antarctic ice mass loss
continues to outpace East Antarctic gains, Earth Planet. Sc.
Lett., 415, 134–141, https://doi.org/10.1016/j.epsl.2015.01.029, 2015.
Herraiz-Borreguero, L. and Garabato, A. C. N.: Poleward shift of Circumpolar
Deep Water threatens the East Antarctic Ice Sheet, Nat. Clim. Change,
12, 728–734, https://doi.org/10.1038/s41558-022-01424-3, 2022.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R.,
Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in West
Antarctica and implications for its retreat, Nat. Geosci., 3, 468–472,
https://doi.org/10.1038/ngeo890, 2010.
Jordan, J., Miles, B., Gudmundsson, G., Jamieson, S., Jenkins, A., and Stokes,
C.: Increased warm water intrusions could cause mass loss in East Antarctica
during the next 200 years, Nat. Commun., 14, 1825,
https://doi.org/10.1038/s41467-023-37553-2, 2023.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a
warming world, Nat. Geosci., 4, 506–513,
https://doi.org/10.1038/ngeo1194, 2011.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E.,
and van den Broeke, M. R.: Observed thinning of Totten Glacier is linked to
coastal polynya variability, Nat. Commun., 4, 1–9, 2013.
Kim, K., Jezek, K. C., and Liu, H.: Orthorectified image mosaic of
Antarctica from 1963 Argon satellite photography: image processing and
glaciological applications, Int. J. Remote Sens., 28,
5357–5373, https://doi.org/10.1080/01431160601105850, 2007.
Konrad, H., Gilbert, L., Cornford, S. L., Payne, A., Hogg, A., Muir, A., and
Shepherd, A.: Uneven onset and pace of ice-dynamical imbalance in the
Amundsen Sea Embayment, West Antarctica, Geophys. Res. Lett., 44,
910–918, https://doi.org/10.1002/2016GL070733, 2017.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018.
Kusahara, K., Hasumi, H., and Williams, G. D.: Impact of the Mertz Glacier
Tongue calving on dense water formation and export, Nat. Commun.,
2, 159, https://doi.org/10.1038/ncomms1156, 2011.
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J.,
Berthier, E., and Nagler, T.: Damage accelerates ice shelf instability and
mass loss in Amundsen Sea Embayment, P. Natl. Acad. Sci. USA, 117, 24735–24741, https://doi.org/10.1073/pnas.1912890117, 2020.
Lee, J., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht,
F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O.,
Panickal, S., and Zhou, T.: Chapter 4 – Future Global Climate: Scenario-based
Projections and Near-term Information, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T.,
Yelekci, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge,
553–672, https://doi.org/10.1017/9781009157896.006, 2021.
Li, X., Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow dynamics and mass
loss of Totten Glacier, East Antarctica, from 1989 to 2015, Geophys. Res. Lett., 43, 12, 6366–6373, 2016.
Li, R., Lv, D., Xie, H., Tian, Y., Xu, Y., Lu, S., Tong, X., and Weng, H.: A
comprehensive assessment and analysis of Antarctic satellite grounding line
products from 1992 to 2009, Sci. China Earth Sci., 64, 1332–1345,
https://doi.org/10.1007/s11430-020-9729-6, 2021.
Li, X., Rignot, E., Morlighem, M., Mouginot, J., and Scheuchl, B.: Grounding
line retreat of Totten Glacier, East Antarctica, 1996 to 2013, Geophys. Res. Lett., 42, 8049–8056, https://doi.org/10.1002/2015GL065701,
2015.
Lim, E.-P., Hendon, H. H., Arblaster, J. M., Delage, F., Nguyen, H., Min,
S.-K., and Wheeler, M. C.: The impact of the Southern Annular Mode on future
changes in Southern Hemisphere rainfall, Geophys. Res. Lett., 43,
7160–7167, https://doi.org/10.1002/2016GL069453, 2016.
Martín-Español, A., Zammit-Mangion, A., Clarke, P. J., Flament, T.,
Helm, V., King, M. A., Luthcke, S. B., Petrie, E., Rémy, F., Schön,
N., Wouters, B., and Bamber, J. L.: Spatial and temporal Antarctic Ice Sheet
mass trends, glacio-isostatic adjustment, and surface processes from a joint
inversion of satellite altimeter, gravity, and GPS data, J. Geophys. Res.-Earth, 121, 182–200,
https://doi.org/10.1002/2015JF003550, 2016.
Massom, R., Scambos, T., Bennetts, L., Reid, P., Squire, V., and Stammerjohn,
S.: Antarctic ice shelf disintegration triggered by sea ice loss and ocean
swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1,
2018.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H.,
Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan,
F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van
den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge,
B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping
environment for Antarctica, the Southern Ocean, and sub-Antarctic islands,
Environ. Modell. Softw., 140, 105015,
https://doi.org/10.1016/j.envsoft.2021.105015, 2021.
Mayer, H. and Herzfeld, U. C.: Structural glaciology of the fast-moving
Jakobshavn Isbræ, Greenland, compared to the surging Bering Glacier,
Alaska, U.S.A., Ann. Glaciol., 30, 243–249,
https://doi.org/10.3189/172756400781820543, 2000.
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A.,
Hogg, A., and Wingham, D.: Increased ice losses from Antarctica detected by
CryoSat-2, Geophys. Res. Lett., 41, 3899–3905,
https://doi.org/10.1002/2014GL060111, 2015.
Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., van den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., and Leuschen, C.: Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation, The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, 2014.
Met-READER.: Casey Temperature. British Antarctic Survey [data set]
https://legacy.bas.ac.uk/met/READER/surface/Casey.All.temperature.html (last access: 13 July 2022),
2022.
Miles, B. W. J.: Synchronous terminus change of East Antarctic outlet
glaciers linked to climatic forcing, Masters Thesis, Durham University,
http://etheses.dur.ac.uk/7333/ (last access: August 2022), 2013.
Miles, B. W. J., Stokes, C. R., Vieli, A., and Cox, N.: Rapid, climate-driven
changes in outlet glaciers on the Pacific coast of East Antarctica, Nature,
500, 563–566, https://doi.org/10.1038/nature12382, 2013.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Pan–ice-sheet glacier
terminus change in East Antarctica reveals sensitivity of Wilkes Land to
sea-ice changes, Sci. Adv., 2, 1–7,
https://doi.org/10.1126/sciadv.1501350, 2016.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up, The Cryosphere, 11, 427–442, https://doi.org/10.5194/tc-11-427-2017, 2017.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event, The Cryosphere, 12, 3123–3136, https://doi.org/10.5194/tc-12-3123-2018, 2018.
Miles, B. W. J., Jordan, J. R., Stokes, C. R., Jamieson, S. S. R., Gudmundsson, G. H., and Jenkins, A.: Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration, The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, 2021.
Miles, B. W. J., Stokes, C. R., Jenkins, A., Jordan, J. R., Jamieson, S. S. R., and Gudmundsson, G. H.: Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds, The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, 2023.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of
Thwaites Glacier, West Antarctica, Sci. Adv., 5, eaau3433,
https://doi.org/10.1126/sciadv.aau3433, 2019.
Millan, R., Mouginot, J., Derkacheva, A., Rignot, E., Milillo, P., Ciraci, E., Dini, L., and Bjørk, A.: Ongoing grounding line retreat and fracturing initiated at the Petermann Glacier ice shelf, Greenland, after 2016, The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, 2022.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and Milillo, P.: Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning, Sci. Rep., 11, 4992, https://doi.org/10.1038/s41598-021-84309-3, 2021.
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's
outlet glaciers from 1992 to 2007, J. Geophys. Res.-Earth, 113, 1–10, https://doi.org/10.1029/2007JF000927, 2008.
Moon, T., Joughin, I., and Smith, B.: Seasonal to multiyear variability of
glacier surface velocity, terminus position, and sea ice/ice mélange in
northwest Greenland, J. Geophys. Res.-Earth, 120,
818–833, https://doi.org/10.1002/2015JF003494, 2015.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2. NASA National Snow
and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. van den, Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice
discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to
2013, Geophys. Res. Lett., 41, 1576–1584,
https://doi.org/10.1002/2013GL059069, 2014.
Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., and Potin, P.: The
Sentinel-1 Mission: New Opportunities for Ice Sheet Observations, Remote Sens.,
7, 9371–9389, https://doi.org/10.3390/rs70709371, 2015.
Nagler, T., Wuite, J., Libert, L., Hetzenecker, M., Keuris, L., and Rott, H.:
Continuous Monitoring of Ice Motion and Discharge of Antarctic and Greenland
Ice Sheets and Outlet Glaciers by Sentinel-1 A and B, IEEE Int. Geosci. Remote Sens., 1061–1064,
https://doi.org/10.1109/IGARSS47720.2021.9553514, 2021.
Nias, I. J., Cornford, S. L., and Payne, A. J.: Contrasting the modelled
sensitivity of the Amundsen Sea Embayment ice streams, J. Glaciol., 62, 552–562, https://doi.org/10.1017/jog.2016.40, 2016.
Nicholls, K., Corr, H., Stewart, C., Lok, L., Brennan, P., and Vaughan, D.:
Instruments and Methods: A ground-based radar for measuring vertical strain
rates and time-varying basal melt rates in ice sheets and shelves, J. Glaciol., 61, 1079–1087, https://doi.org/10.3189/2015JoG15J073,
2015.
Nilsson, J., Gardner, A. S., and Paolo, F. S.: MEaSUREs ITS_LIVE Antarctic Grounded Ice Sheet Elevation Change, Version 1, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/L3LSVDZS15ZV, 2021.
Nilsson, J., Gardner, A. S., and Paolo, F. S.: Elevation change of the Antarctic Ice Sheet: 1985 to 2020, Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, 2022.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015.
Parizek, B. R., Christianson, K., Anandakrishnan, S., Alley, R. B., Walker,
R. T., Edwards, R. A., Wolfe, D. S., Bertini, G. T., Rinehart, S. K.,
Bindschadler, R. A., and Nowicki, S. M. J.: Dynamic (in)stability of
Thwaites Glacier, West Antarctica, J. Geophys. Res.-Earth, 118, 638–655, https://doi.org/10.1002/jgrf.20044, 2013.
Park, J., Gourmelen, N., Shepherd, A., Kim, S., Vaughan, D., and Wingham, D.:
Sustained retreat of the Pine Island Glacier, Geophys. Res. Lett.,
40, 2137–2142, https://doi.org/10.1002/grl.50379, 2013.
Pattyn, F. and Derauw, D.: Ice-dynamic conditions of Shirase Glacier,
Antarctica, inferred from ERS SAR interferometry, J. Glaciol., 48,
559–565, https://doi.org/10.3189/172756502781831115, 2002.
Pattyn, F. and Morlighem, M.: The uncertain future of the Antarctic Ice
Sheet, Science, 367, 1331-1335,
https://doi.org/10.1126/science.aaz5487, 2020.
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R.,
Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources
and guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project, Remote Sens. Environ., 203, 256–275,
https://doi.org/10.1016/j.rse.2017.08.038, 2017.
Pelle, T., Morlighem, M., Nakayama, Y., and Seroussi, H.: Widespread
Grounding Line Retreat of Totten Glacier, East Antarctica, Over the 21st
Century, Geophys. Res. Lett., 48, e2021GL093213,
https://doi.org/10.1029/2021GL093213, 2021.
Petty, A. A., Holland, P. R., and Feltham, D. L.: Sea ice and the ocean mixed layer over the Antarctic shelf seas, The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, 2014.
Picton, H., Stokes, C., and Jamieson, S.: Terminus Positions and Flowlines of Vincennes Bay Outlet Glaciers, East Antarctica, 1963–2022 (Version 1.0), NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/4d4bd383-f6bb-4476-9058-d883b7706b26, 2023.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.:
Extensive dynamic thinning on the margins of the Greenland and Antarctic ice
sheets, Nature, 461, 971–975, https://doi.org/10.1038/nature08471, 2009.
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far
reach of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018.
Ribeiro, N., Herraiz-Borreguero, L., Rintoul, S. R., McMahon, C. R.,
Hindell, M., Harcourt, R., and Williams, G.: Warm Modified Circumpolar Deep
Water Intrusions Drive Ice Shelf Melt and Inhibit Dense Shelf Water
Formation in Vincennes Bay, East Antarctica, J. Geophys. Res.-Oceans, 126, 1–17,
https://doi.org/10.1029/2020JC016998, 2021.
Rignot, E.: Tidal motion, ice velocity and melt rate of Petermann Gletscher,
Greenland, measured from radar interferometry, J. Glaciol., 42,
476–485, https://doi.org/10.3189/S0022143000003464, 1996.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38, 10, 1–6, https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140,
2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs Antarctic Grounding Line
from Differential Satellite Radar Interferometry, Version 2. NASA National
Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Roberts, J., Galton-Fenzi, B. K., Paolo, F. S., Donnelly, C., Gwyther, D.
E., Padman, L., Young, D., Warner, R., Greenbaum, J., Fricker, H. A., Payne,
A. J., Cornford, S., Le Brocq, A., van Ommen, T., Blankenship, D., and
Siegert, M. J.: Ocean forced variability of Totten Glacier mass loss,
Geological Society, London, Special Publications, 461, 175–186,
https://doi.org/10.1144/SP461.6, 2018.
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and
Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Remote Sens.
Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D.
H., Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R.,
Dutrieux, P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B.,
Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J.,
Trusel, L. D., Vaughan, D. G., and Yager, P. L.: How much, how fast?: A
science review and outlook for research on the instability of Antarctica's
Thwaites Glacier in the 21st century, Global Planet. Change, 153,
16–34, https://doi.org/10.1016/j.gloplacha.2017.04.008, 2017.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, 1-19,
https://doi.org/10.1029/2006JF000664, 2007.
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019a.
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Gridded surface elevation changes from multi-mission satellite altimetry 1978-2017. PANGEA [data set] https://doi.org/10.1594/PANGAEA.897390, 2019b.
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica, The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, 2019.
Shen, Q., Wang, H., Shum, C. K., Jiang, L., Hsu, H. T., and Dong, J.: Recent
high-resolution Antarctic ice velocity maps reveal increased mass loss in
Wilkes Land, East Antarctica, Sci. Rep., 8, 1–8,
https://doi.org/10.1038/s41598-018-22765-0, 2018.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater,
T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46,
8174–8183, https://doi.org/10.1029/2019GL082182, 2019.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science,
368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020a.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R.,and Zwally, H. J.: Ice-sheet height and thickness changes from ICESat to ICESat-2. ResearchWorks Archive [data set] http://hdl.handle.net/1773/45388, 2020b.
Spence, P., Griffies, S. M., England, M. H., Hogg, A. McC., Saenko, O. A.,
and Jourdain, N. C.: Rapid subsurface warming and circulation changes of
Antarctic coastal waters by poleward shifting winds, Geophys. Res. Lett., 41, 4601–4610, https://doi.org/10.1002/2014GL060613, 2014.
Steig, E. J., Ding, Q., Battisti, D. S., and Jenkins, A.: Tropical forcing
of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen
Sea Embayment, West Antarctica, Ann. Glaciol., 53, 19–28,
https://doi.org/10.3189/2012AoG60A110, 2012.
Stokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England, M. H.,
Foppert, A., Jamieson, S. S. R., Jones, R. S., King, M. A., Lenaerts, J. T.
M., Medley, B., Miles, B. W. J., Paxman, G. J. G., Ritz, C., van de Flierdt,
T., and Whitehouse, P. L.: Response of the East Antarctic Ice Sheet to past
and future climate change, Nature, 608, 275–286,
https://doi.org/10.1038/s41586-022-04946-0, 2022.
Sun, S., Cornford, S. L., Gwyther, D. E., Gladstone, R. M., Galton-Fenzi, B.
K., Zhao, L., and Moore, J. C.: Impact of ocean forcing on the Aurora Basin
in the 21st and 22nd centuries, Ann. Glaciol., 57, 79–86,
https://doi.org/10.1017/aog.2016.27, 2016.
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., van
den Broeke, M. R., van Wessem, J. M., and Reijmer, C. H.: Mass loss of the
Amundsen Sea Embayment of West Antarctica from four independent techniques,
Geophys. Res. Lett., 41, 8421–8428,
https://doi.org/10.1002/2014GL061940, 2014.
The IMBIE Team.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219-222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Thoma, M., Jenkins, A., Holland, D., and Jacobs, S.: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica, Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008.
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The
Antarctic Slope Current in a Changing Climate, Rev. Geophys., 56,
741–770, https://doi.org/10.1029/2018RG000624, 2018.
Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G.,
Hillenbrand, C.-D., and Bracegirdle, T. J.: Atmosphere-ocean-ice
interactions in the Amundsen Sea Embayment, West Antarctica, Rev.
Geophys., 55, 235–276, https://doi.org/10.1002/2016RG000532, 2017a.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O.,
Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of
Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868–6875,
https://doi.org/10.1002/2017GL073656, 2017b.
Turner, J., Holmes, C., Caton Harrison, T., Phillips, T., Jena, B.,
Reeves-Francois, T., Fogt, R., Thomas, E. R., and Bajish, C. C.: Record Low
Antarctic Sea Ice Cover in February 2022, Geophys. Res. Lett., 49,
e2022GL098904, https://doi.org/10.1029/2022GL098904, 2022.
Vaňková, I., Cook, S., Winberry, P., Nicholls, K., and Galton-Fenzi, B.:
Deriving Melt Rates at a Complex Ice Shelf Base Using In Situ Radar:
Application to Totten Ice Shelf, Geophys. Res. Lett., 48,
e2021GL092692, https://doi.org/10.1029/2021GL092692, 2021.
Wang, L., Davis, J. L., and Howat, I. M.: Complex Patterns of Antarctic Ice
Sheet Mass Change Resolved by Time-Dependent Rate Modeling of GRACE and
GRACE Follow-On Observations, Geophys. Res. Lett., 48,
e2020GL090961, https://doi.org/10.1029/2020GL090961, 2021.
Winsborrow, M. C. M., Clark, C. D., and Stokes, C. R.: What controls the
location of ice streams?, Earth-Sci. Rev., 103, 45–59,
https://doi.org/10.1016/j.earscirev.2010.07.003, 2010.
Yamazaki, K., Aoki, S., Katsumata, K., Hirano, D., and Nakayama, Y.:
Multidecadal poleward shift of the southern boundary of the Antarctic
Circumpolar Current off East Antarctica, Sci. Adv., 7, eabf8755,
https://doi.org/10.1126/sciadv.abf8755, 2021.
Young, D. A., Wright, A. P., Roberts, J. L., Warner, R. C., Young, N. W.,
Greenbaum, J. S., Schroeder, D. M., Holt, J. W., Sugden, D. E., Blankenship,
D. D., van Ommen, T. D., and Siegert, M. J.: A dynamic early East Antarctic
Ice Sheet suggested by ice-covered fjord landscapes, Nature, 474, 72–75,
https://doi.org/10.1038/nature10114, 2011.
Yu, H., Rignot, E., Seroussi, H., and Morlighem, M.: Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws, The Cryosphere, 12, 3861–3876, https://doi.org/10.5194/tc-12-3861-2018, 2018.
Zheng, F., Li, J., Clark, R. T., and Nnamchi, H. C.: Simulation and
Projection of the Southern Hemisphere Annular Mode in CMIP5 Models, J. Climate, 26, 9860–9879, https://doi.org/10.1175/JCLI-D-13-00204.1, 2013.
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East...