Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-1003-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1003-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1SS, UK
Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, 80333 Munich , Germany
Geoffrey J. Dawson
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1SS, UK
Stephen J. Chuter
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1SS, UK
Jonathan L. Bamber
CORRESPONDING AUTHOR
Bristol Glaciology Centre, School of Geographical Sciences, University
of Bristol, Bristol, BS8 1SS, UK
Chair of Data Science in Earth Observation, Department of Aerospace and Geodesy, Technical University of Munich, 80333 Munich , Germany
Related authors
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020, https://doi.org/10.5194/tc-14-3629-2020, 2020
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is critical for the understanding of ice sheet instability and the evaluation of mass balance. We present a new, fully automated method to map the grounding zone from ICESat-2 laser altimetry. Our results of Larsen C Ice Shelf demonstrate the efficiency, density, and high spatial accuracy with which ICESat-2 can image complex grounding zones.
Adam Igneczi and Jonathan Louis Bamber
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-169, https://doi.org/10.5194/essd-2024-169, 2024
Preprint under review for ESSD
Short summary
Short summary
Freshwater from Arctic land ice loss strongly impacts the Arctic and North Atlantic oceans. Datasets describing this freshwater discharge have low resolution and do not cover the entire Arctic. We statistically enhanced coarse resolution climate model data – from ~6 km to 250 m – and routed meltwater towards the coastlines, to provide high resolution data that is covering all Arctic regions. This approach has far lower computational requirements than running climate models at high resolution.
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732, https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary
Short summary
Glacier ice thickness is difficult to measure directly but is essential for glacier evolution modelling. In this work, we employ a novel approach combining physical knowledge and data-driven machine learning to estimate the ice thickness of multiple glaciers in Spitsbergen, Barentsøya, and Edgeøya in Svalbard. We identify challenges for the physics-aware machine learning model and opportunities for improving the accuracy and physical consistency that would also apply to other geophysical tasks.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Geoffrey J. Dawson and Jack C. Landy
The Cryosphere, 17, 4165–4178, https://doi.org/10.5194/tc-17-4165-2023, https://doi.org/10.5194/tc-17-4165-2023, 2023
Short summary
Short summary
In this study, we compared measurements from CryoSat-2 and ICESat-2 over Arctic summer sea ice to understand any possible biases between the two satellites. We found that there is a difference when we measure elevation over summer sea ice using CryoSat-2 and ICESat-2, and this is likely due to surface melt ponds. The differences we found were in good agreement with theoretical predictions, and this work will be valuable for summer sea ice thickness measurements from both altimeters.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Sam Royston, Rory J. Bingham, and Jonathan L. Bamber
Ocean Sci., 18, 1093–1107, https://doi.org/10.5194/os-18-1093-2022, https://doi.org/10.5194/os-18-1093-2022, 2022
Short summary
Short summary
Decadal sea-level variability masks longer-term changes and increases uncertainty in observed trend and acceleration estimates. We use numerical ocean models to determine the magnitude of decadal variability we might expect in sea-level trends at coastal locations around the world, resulting from natural, internal variability. A proportion of that variability can be replicated from known climate modes, giving a range to add to short- to mid-term projections of regional sea-level trends.
Stephen J. Chuter, Andrew Zammit-Mangion, Jonathan Rougier, Geoffrey Dawson, and Jonathan L. Bamber
The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022, https://doi.org/10.5194/tc-16-1349-2022, 2022
Short summary
Short summary
We find the Antarctic Peninsula to have a mean mass loss of 19 ± 1.1 Gt yr−1 over the 2003–2019 period, driven predominantly by changes in ice dynamic flow like due to changes in ocean forcing. This long-term record is crucial to ascertaining the region’s present-day contribution to sea level rise, with the understanding of driving processes enabling better future predictions. Our statistical approach enables us to estimate this previously poorly surveyed regions mass balance more accurately.
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022, https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary
Short summary
We modelled the response of the Larsen C Ice Shelf (LCIS) and its tributary glaciers to the calving of the A68 iceberg and validated our results with observations. We found that the impact was limited, confirming that mostly passive ice was calved. Through further calving experiments we quantified the total buttressing provided by the LCIS and found that over 80 % of the buttressing capacity is generated in the first 5 km of the ice shelf downstream of the grounding line.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Fanny Lehmann, Bramha Dutt Vishwakarma, and Jonathan Bamber
Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, https://doi.org/10.5194/hess-26-35-2022, 2022
Short summary
Short summary
Many data sources are available to evaluate components of the water cycle (precipitation, evapotranspiration, runoff, and terrestrial water storage). Despite this variety, it remains unclear how different combinations of datasets satisfy the conservation of mass. We conducted the most comprehensive analysis of water budget closure on a global scale to date. Our results can serve as a basis to select appropriate datasets for regional hydrological studies.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020, https://doi.org/10.5194/tc-14-3629-2020, 2020
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is critical for the understanding of ice sheet instability and the evaluation of mass balance. We present a new, fully automated method to map the grounding zone from ICESat-2 laser altimetry. Our results of Larsen C Ice Shelf demonstrate the efficiency, density, and high spatial accuracy with which ICESat-2 can image complex grounding zones.
Geoffrey J. Dawson and Jonathan L. Bamber
The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, https://doi.org/10.5194/tc-14-2071-2020, 2020
Short summary
Short summary
The grounding zone is where grounded ice begins to float and is the boundary at which the ocean has the most significant influence on the inland ice sheet. Here, we present the results of mapping the grounding zone of Antarctic ice shelves from CryoSat-2 radar altimetry. We found good agreement with previous methods that mapped the grounding zone. We also managed to map areas of Support Force Glacier and the Doake Ice Rumples (Filchner–Ronne Ice Shelf), which were previously incompletely mapped.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019, https://doi.org/10.5194/tc-13-3093-2019, 2019
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J. Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad, Terry Wilson, and Mark R. Drinkwater
Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, https://doi.org/10.5194/essd-10-493-2018, 2018
Short summary
Short summary
We present a collection of data sets, consisting of surface-elevation rates for Antarctic ice sheet from a combination of Envisat and ICESat, bedrock uplift rates for 118 GPS sites in Antarctica, and optimally filtered GRACE gravity field rates. We provide viscoelastic response functions to a disc load forcing for Earth structures present in East and West Antarctica. This data collection enables a joint inversion for present-day ice-mass changes and glacial isostatic adjustment in Antarctica.
Andrew J. Tedstone, Jonathan L. Bamber, Joseph M. Cook, Christopher J. Williamson, Xavier Fettweis, Andrew J. Hodson, and Martyn Tranter
The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, https://doi.org/10.5194/tc-11-2491-2017, 2017
Short summary
Short summary
The bare ice albedo of the south-west Greenland ice sheet varies dramatically between years. The reasons are unclear but likely involve darkening by inorganic particulates, cryoconite and ice algae. We use satellite imagery to examine dark ice dynamics and climate model outputs to find likely climatological controls. Outcropping particulates can explain the spatial extent of dark ice, but the darkening itself is likely due to ice algae growth controlled by meltwater and light availability.
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017, https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016, https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary
Short summary
Ice penetrating radar enables determination of the basal properties of ice sheets. Existing algorithms assume stationarity in the attenuation rate, which is not justifiable at an ice sheet scale. We introduce the first ice-sheet-wide algorithm for radar attenuation that incorporates spatial variability, using the temperature field from a numerical model as an initial guess. The study is a step toward ice-sheet-wide data products for basal properties and evaluation of model temperature fields.
Ioana S. Muresan, Shfaqat A. Khan, Andy Aschwanden, Constantine Khroulev, Tonie Van Dam, Jonathan Bamber, Michiel R. van den Broeke, Bert Wouters, Peter Kuipers Munneke, and Kurt H. Kjær
The Cryosphere, 10, 597–611, https://doi.org/10.5194/tc-10-597-2016, https://doi.org/10.5194/tc-10-597-2016, 2016
Short summary
Short summary
We use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) during 1990–2014. The model simulates two major accelerations in 1998 and 2003 that are consistent with observations. We find that most of the JI retreat during the simulated period is driven by the ocean parametrization used, and the glacier's subsequent response, which is largely governed by bed geometry. The study shows progress in modelling the temporal variability of the flow at JI.
N. Schoen, A. Zammit-Mangion, J. C. Rougier, T. Flament, F. Rémy, S. Luthcke, and J. L. Bamber
The Cryosphere, 9, 805–819, https://doi.org/10.5194/tc-9-805-2015, https://doi.org/10.5194/tc-9-805-2015, 2015
Short summary
Short summary
This paper provides a proof of concept approach for combining multiple observations and inferences to provide rigorous, error-bounded estimates of mass trends and surface processes for the Antarctic ice sheet. Here we apply the method to West Antarctica, using a time-invariant solution by way of proof of concept. Subsequent work will utilise a time evolving approach to the whole ice sheet.
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
T. Howard, A. K. Pardaens, J. L. Bamber, J. Ridley, G. Spada, R. T. W. L. Hurkmans, J. A. Lowe, and D. Vaughan
Ocean Sci., 10, 473–483, https://doi.org/10.5194/os-10-473-2014, https://doi.org/10.5194/os-10-473-2014, 2014
T. Howard, J. Ridley, A. K. Pardaens, R. T. W. L. Hurkmans, A. J. Payne, R. H. Giesen, J. A. Lowe, J. L. Bamber, T. L. Edwards, and J. Oerlemans
Ocean Sci., 10, 485–500, https://doi.org/10.5194/os-10-485-2014, https://doi.org/10.5194/os-10-485-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage
The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, https://doi.org/10.5194/tc-7-499-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Remote Sensing
A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
Mapping the extent of giant Antarctic icebergs with deep learning
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote sensing data
Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland
Seasonal land-ice-flow variability in the Antarctic Peninsula
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry
An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery
Penetration of interferometric radar signals in Antarctic snow
Brief communication: Ice sheet elevation measurements from the Sentinel-3A and Sentinel-3B tandem phase
Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Quantifying spatiotemporal variability of glacier algal blooms and the impact on surface albedo in southwestern Greenland
Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica
Measuring the location and width of the Antarctic grounding zone using CryoSat-2
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Melt in Antarctica derived from Soil Moisture and Ocean Salinity (SMOS) observations at L band
Sentinel-3 Delay-Doppler altimetry over Antarctica
The Reference Elevation Model of Antarctica
Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2
Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland
Coherent large beamwidth processing of radio-echo sounding data
Multi-channel and multi-polarization radar measurements around the NEEM site
Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet
Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula
Philipp Sebastian Arndt and Helen Amanda Fricker
The Cryosphere, 18, 5173–5206, https://doi.org/10.5194/tc-18-5173-2024, https://doi.org/10.5194/tc-18-5173-2024, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lake segments up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enable the development of data-driven models of meltwater volumes in satellite imagery.
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024, https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Short summary
The grounding line, where ice begins to float, is an essential variable to understand ice dynamics, but in some locations it can be challenging to measure with established techniques. Using satellite data and a new method, Wallis et al. measure the grounding line position of glaciers and ice shelves in the Antarctic Peninsula and find retreats of up to 16.3 km have occurred since the last time measurements were made in the 1990s.
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024, https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
The Cryosphere, 18, 2531–2555, https://doi.org/10.5194/tc-18-2531-2024, https://doi.org/10.5194/tc-18-2531-2024, 2024
Short summary
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and change in extent over time. We present a new method for detecting ice slabs in satellite radar data, which we use to map ice slabs at 500 m resolution across the entire ice sheet in winter 2016–2017. Our results provide better spatial coverage and resolution than previous maps from airborne radar and lay the groundwork for long-term monitoring of ice slabs from space.
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023, https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2023-1556, https://doi.org/10.5194/egusphere-2023-1556, 2023
Short summary
Short summary
This study used a machine learning approach to estimate the densities over the Antarctic Ice Sheet, particularly in the areas where the snow is usually dry. The motivation is to establish a link between satellite parameters to snow densities, as measurements are difficult for people to take on site. It provides valuable insights into the complexities of the relationship between satellite parameters and firn density and provides potential for further studies.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Karla Boxall, Frazer D. W. Christie, Ian C. Willis, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022, https://doi.org/10.5194/tc-16-3907-2022, 2022
Short summary
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Thomas R. Chudley, Ian M. Howat, Bidhyananda Yadav, and Myoung-Jong Noh
The Cryosphere, 16, 2629–2642, https://doi.org/10.5194/tc-16-2629-2022, https://doi.org/10.5194/tc-16-2629-2022, 2022
Short summary
Short summary
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it difficult to extract reliable glacier velocity fields from images from different orbits. Here, we use a complete record of velocity fields at four Greenlandic outlet glaciers to empirically estimate the systematic error, allowing us to correct cross-track glacier velocity fields to a comparable accuracy to other medium-resolution satellite datasets.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Rajashree Tri Datta and Bert Wouters
The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021, https://doi.org/10.5194/tc-15-5115-2021, 2021
Short summary
Short summary
The ICESat-2 laser altimeter can detect the surface and bottom of a supraglacial lake. We introduce the Watta algorithm, automatically calculating lake surface, corrected bottom, and (sub-)surface ice at high resolution adapting to signal strength. ICESat-2 depths constrain full lake depths of 46 lakes over Jakobshavn glacier using multiple sources of imagery, including very high-resolution Planet imagery, used for the first time to extract supraglacial lake depths empirically using ICESat-2.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Shujie Wang, Marco Tedesco, Patrick Alexander, Min Xu, and Xavier Fettweis
The Cryosphere, 14, 2687–2713, https://doi.org/10.5194/tc-14-2687-2020, https://doi.org/10.5194/tc-14-2687-2020, 2020
Short summary
Short summary
Glacial algal blooms play a significant role in darkening the Greenland Ice Sheet during summertime. The dark pigments generated by glacial algae could substantially reduce the bare ice albedo and thereby enhance surface melt. We used satellite data to map the spatial distribution of glacial algae and characterized the seasonal growth pattern and interannual trends of glacial algae in southwestern Greenland. Our study is important for bridging microbial activities with ice sheet mass balance.
Laura E. Lindzey, Lucas H. Beem, Duncan A. Young, Enrica Quartini, Donald D. Blankenship, Choon-Ki Lee, Won Sang Lee, Jong Ik Lee, and Joohan Lee
The Cryosphere, 14, 2217–2233, https://doi.org/10.5194/tc-14-2217-2020, https://doi.org/10.5194/tc-14-2217-2020, 2020
Short summary
Short summary
An extensive aerogeophysical survey including two active subglacial lakes was conducted over David Glacier, Antarctica. Laser altimetry shows that the lakes were at a highstand, while ice-penetrating radar has no unique signature for the lakes when compared to the broader basal environment. This suggests that active subglacial lakes are more likely to be part of a distributed subglacial hydrological system than to be discrete reservoirs, which has implications for future surveys and drilling.
Geoffrey J. Dawson and Jonathan L. Bamber
The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, https://doi.org/10.5194/tc-14-2071-2020, 2020
Short summary
Short summary
The grounding zone is where grounded ice begins to float and is the boundary at which the ocean has the most significant influence on the inland ice sheet. Here, we present the results of mapping the grounding zone of Antarctic ice shelves from CryoSat-2 radar altimetry. We found good agreement with previous methods that mapped the grounding zone. We also managed to map areas of Support Force Glacier and the Doake Ice Rumples (Filchner–Ronne Ice Shelf), which were previously incompletely mapped.
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020, https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Short summary
Reflected GPS signals can be used to measure snow accumulation. The GPS method is accurate and has a footprint that is larger than that of many other methods. This short note makes available 9 years of daily snow accumulation measurements from Greenland that were derived from reflected GPS signals. It also provides information about open-source software that the cryosphere community can use to analyze other datasets.
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020, https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Short summary
This study uses reflected GPS signals to measure ice at the South Pole itself for the first time. These measurements are essential to understand the interaction of the ice with the Earth’s physical systems. Orbital constraints mean that satellites are usually unable to measure in the vicinity of the South Pole itself. This is overcome here by using data obtained by UK TechDemoSat-1. Data are processed to obtain the height of glacial ice across the Greenland and Antarctic ice sheets.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Malcolm McMillan, Alan Muir, Andrew Shepherd, Roger Escolà, Mònica Roca, Jérémie Aublanc, Pierre Thibaut, Marco Restano, Américo Ambrozio, and Jérôme Benveniste
The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, https://doi.org/10.5194/tc-13-709-2019, 2019
Short summary
Short summary
Melting of the Greenland and Antarctic ice sheets is one of the main causes of current sea level rise. Understanding ice sheet change requires large-scale systematic satellite monitoring programmes. This study provides the first assessment of a new long-term source of measurements, from Sentinel-3 satellite altimetry. We estimate the accuracy of Sentinel-3 across Antarctica, show that the satellite can detect regions that are rapidly losing ice, and identify signs of subglacial lake activity.
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Short summary
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale terrain map at less than 10 m resolution, and the first with a time stamp, enabling measurements of elevation change. REMA is constructed from over 300 000 individual stereoscopic elevation models (DEMs) extracted from submeter-resolution satellite imagery. REMA is vertically registered to satellite altimetry, resulting in errors of less than 1 m over most of its area and relative uncertainties of decimeters.
Kelly M. Brunt, Thomas A. Neumann, and Christopher F. Larsen
The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019, https://doi.org/10.5194/tc-13-579-2019, 2019
Short summary
Short summary
This paper provides an assessment of new GPS elevation data collected near the South Pole, Antarctica, that will ultimately be used for ICESat-2 satellite elevation data validation. Further, using the new ground-based GPS data, this paper provides an assessment of airborne lidar elevation data collected between 2014 and 2017, which will also be used for ICESat-2 data validation.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Anton Heister and Rolf Scheiber
The Cryosphere, 12, 2969–2979, https://doi.org/10.5194/tc-12-2969-2018, https://doi.org/10.5194/tc-12-2969-2018, 2018
Short summary
Short summary
We provide a method based on Fourier analysis of coherent radio-echo sounding data for analyzing angular back-scattering characteristics of the ice sheet and bed. The characteristics can be used for the bed roughness estimation and detection of subglacial water. The method also offers improved estimation of the internal layers' tilt. The research is motivated by a need for a tool for training dictionaries for model-based tomographic focusing of multichannel coherent radio-echo sounders.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M.
R.: Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020.
Aitken, A. R. A., Roberts, J. L., Ommen, T. D. van, Young, D. A., Golledge,
N. R., Greenbaum, J. S., Blankenship, D. D., and Siegert, M. J.: Repeated
large-scale retreat and advance of Totten Glacier indicated by inland bed
erosion, Nature, 533, 385–389, https://doi.org/10.1038/nature17447, 2016.
ASF: ASF SAR Data Search Manual, https://asf.alaska.edu/api/ (last access: 9 July 2021), 2023.
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009.
Borsa, A. A., Moholdt, G., Fricker, H. A., and Brunt, K. M.: A range correction for ICESat and its potential impact on ice-sheet mass balance studies, The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014, 2014.
Brancato, V., Rignot, E., Milillo, P., Morlighem, M., Mouginot, J., An, L.,
Scheuchl, B., Jeong, S., Rizzoli, P., Bueso Bello, J. L., and Prats-Iraola,
P.: Grounding Line Retreat of Denman Glacier, East Antarctica, Measured With
COSMO-SkyMed Radar Interferometry Data, Geophys. Res. Lett., 47, e2019GL086291,
https://doi.org/10.1029/2019GL086291, 2020.
Brunt, K. M., Fricker, H. A., Padman, L., and O'Neel, S.: ICESat-derived
Grounding Zone for Antarctic Ice Shelves, NASA Natl. Snow Ice Data Cent.
Distrib. Act. Arch. Cent. [data set], https://doi.org/10.7265/N5CF9N19,
2010a.
Brunt, K. M., Fricker, H. A., Padman, L., Scambos, T. A., and O'Neel, S.:
Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat
laser altimetry, Ann. Glaciol., 51, 71–79,
https://doi.org/10.3189/172756410791392790, 2010b.
Brunt, K. M., Fricker, H. A., and Padman, L.: Analysis of ice plains of the
Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry, J.
Glaciol., 57, 965–975, https://doi.org/10.3189/002214311798043753, 2011.
Chuter, S. J. and Bamber, J. L.: Antarctic ice shelf thickness from
CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 10–721,
https://doi.org/10.1002/2015GL066515, 2015.
Chuter, S. J., Zammit-Mangion, A., Rougier, J., Dawson, G., and Bamber, J. L.: Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion, The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022, 2022.
CryoTEMPO-EOLIS: Elevation Over Land Ice from Swath, CryoTEMPO-EOLIS [data set], https://www.cryotempo-eolis.org, last access: 25 January 2021.
Dawson, G. J. and Bamber, J. L.: Antarctic Grounding Line Mapping From
CryoSat-2 Radar Altimetry, Geophys. Res. Lett., 44, 11886–11893,
https://doi.org/10.1002/2017GL075589, 2017.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., Van Den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
ESA: Antarctic Ice Sheet Climate Change Initiative, Grounding Line Locations
for the Denman and Totten Glaciers, Antarctica, 1996–2015 v1.0, Cent.
Environ. Data Anal., 2017.
ESA: CryoSat-2 Science Server, https://science-pds.cryosat.esa.int/ (last access: 25 January 2021), 2023.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Fricker, H. A. and Padman, L.: Ice shelf grounding zone structure from
ICESat laser altimetry, Geophys. Res. Lett., 33, L15502,
https://doi.org/10.1029/2006GL026907, 2006.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and
Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East
Antarctica using InSAR, MODIS and ICESat, Antarct. Sci., 21, 515–532,
https://doi.org/10.1017/S095410200999023X, 2009.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Chang., 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs
ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface
Velocities: Version 1, NASA Natl. Snow Ice Data Cent. Distrib. Act. Arch.
Cent. [data set], https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
Goodwin, I. D.: Snow accumulation and surface topography in the katabatic
zone of Eastern Wilkes Land, Antarctica, Antarct. Sci., 2, 235–242,
https://doi.org/10.1017/S0954102090000323, 1990.
Gourmelen, N., Escorihuela, M. J., Shepherd, A., Foresta, L., Muir, A.,
Garcia-Mondéjar, A., Roca, M., Baker, S. G., and Drinkwater, M. R.:
CryoSat-2 swath interferometric altimetry for mapping ice elevation and
elevation change, Adv. Sp. Res., 62, 1226–1242,
https://doi.org/10.1016/j.asr.2017.11.014, 2018.
Gray, L., Burgess, D., Copland, L., Dunse, T., Langley, K., and Moholdt, G.: A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland, The Cryosphere, 11, 1041–1058, https://doi.org/10.5194/tc-11-1041-2017, 2017.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van
Ommen, T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten
Glacier in East Antarctica, Nat. Geosci., 8, 294–298,
https://doi.org/10.1038/ngeo2388, 2015.
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and van
Wijk, E.: Wind causes Totten Ice Shelf melt and acceleration, Sci. Adv., 3, e1701681,
https://doi.org/10.1126/sciadv.1701681, 2017.
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., and Fricker, H. A.:
Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves,
Geophys. Res. Lett., 46, 13903–13909, https://doi.org/10.1029/2019GL085027,
2019.
Gwyther, D. E., Galton-Fenzi, B. K., Hunter, J. R., and Roberts, J. L.: Simulated melt rates for the Totten and Dalton ice shelves, Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, 2014.
Hirano, D., Mizobata, K., Sasaki, H., Murase, H., Tamura, T., and Aoki, S.:
Poleward eddy-induced warm water transport across a shelf break off Totten
Ice Shelf, East Antarctica, Commun. Earth Environ., 2, 153,
https://doi.org/10.1038/s43247-021-00217-4, 2021.
Hofton, M. A., Luthcke, S. B., and Blair, J. B.: Estimation of ICESat
intercampaign elevation biases from comparison of lidar data in East
Antarctica, Geophys. Res. Lett., 40, 5698–5703,
https://doi.org/10.1002/2013GL057652, 2013.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Joughin, I., Smith, B. E., and Medley, B.: Marine ice sheet collapse
potentially under way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055,
2014.
Joughin, I., Shapero, D., Dutrieux, P., and Smith, B.: Ocean-induced melt
volume directly paces ice loss from Pine Island Glacier, Sci. Adv., 7, eabi5738,
https://doi.org/10.1126/sciadv.abi5738, 2021.
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E.,
and van den Broeke, M. R.: Observed thinning of Totten Glacier is linked to
coastal polynya variability, Nat. Commun., 4, 2857,
https://doi.org/10.1038/ncomms3857, 2013.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat.
Geosci., 11, 258–262, https://doi.org/10.1038/s41561-018-0082-z, 2018.
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J. T., Das, S. B., and van den Broeke, M. R.: Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014, The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, 2015.
Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L.: Mapping the grounding zone of Larsen C Ice Shelf, Antarctica, from ICESat-2 laser altimetry, The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020, 2020.
Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L.: A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry, Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, 2022.
Li, T., Dawson, G., Chuter, S., and Bamber, J.: Grounding line datasets of Totten and Moscow University Glaciers 2017–2021, The University of Bristol data repository, data.bris [data set], https://doi.org/10.5523/bris.1hd8tb43wy2c42gf9ohz1fi8nl, 2023.
Li, X., Rignot, E., Morlighem, M., Mouginot, J., and Scheuchl, B.: Grounding
line retreat of Totten Glacier, East Antarctica, 1996 to 2013, Geophys. Res.
Lett., 42, 8049–8056, https://doi.org/10.1002/2015GL065701, 2015.
Li, X., Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow dynamics and
mass loss of Totten Glacier, East Antarctica, from 1989 to 2015, Geophys.
Res. Lett., 43, 6366–6373, https://doi.org/10.1002/2016GL069173, 2016.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E.,
Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2): Science requirements, concept, and implementation,
Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Milillo, P., Rignot, E., Mouginot, J., Scheuchl, B., Morlighem, M., Li, X.,
and Salzer, J. T.: On the Short-term Grounding Zone Dynamics of Pine Island
Glacier, West Antarctica, Observed With COSMO-SkyMed Interferometric Data,
Geophys. Res. Lett., 44, 10436–10444,
https://doi.org/10.1002/2017GL074320, 2017.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J. L., Prats-Iraola, P., and Dini, L.: Rapid glacier retreat
rates observed in West Antarctica, Nat. Geosci., 15, 48–53,
https://doi.org/10.1038/s41561-021-00877-z, 2022.
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and
Milillo, P.: Automatic delineation of glacier grounding lines in
differential interferometric synthetic-aperture radar data using deep
learning, Sci. Rep., 11, 4992, https://doi.org/10.1038/s41598-021-84309-3,
2021.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 2, NASA Natl. Snow
Ice Data Cent. Distrib. Act. Arch. Cent. [data set],
https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M.
R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Rignot, E., Scheuchl, B., and Millan, R.: Comprehensive Annual
Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data,
Remote Sens., 9, 364, https://doi.org/10.3390/RS9040364, 2017a.
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSUREs Annual Antarctic Ice
Velocity Maps 2005–2017, Version 1. Boulder, Colorado USA, NASA Natl. Snow
Ice Data Cent. Distrib. Act. Arch. Cent. [data set],
https://doi.org/10.5067/9T4EPQXTJYW9, 2017b.
Nitsche, F. O., Porter, D., Williams, G., Cougnon, E. A., Fraser, A. D.,
Correia, R., and Guerrero, R.: Bathymetric control of warm ocean water
access along the East Antarctic Margin, Geophys. Res. Lett., 44, 8936–8944,
https://doi.org/10.1002/2017GL074433, 2017.
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.: A new
tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34,
247–254, https://doi.org/10.3189/172756402781817752, 2002.
Pelle, T., Morlighem, M., and McCormack, F. S.: Aurora Basin, the Weak
Underbelly of East Antarctica, Geophys. Res. Lett., 47, e2019GL086821,
https://doi.org/10.1029/2019GL086821, 2020.
Pelle, T., Morlighem, M., Nakayama, Y., and Seroussi, H.: Widespread
Grounding Line Retreat of Totten Glacier, East Antarctica, Over the 21st
Century, Geophys. Res. Lett., 48, e2021GL093213,
https://doi.org/10.1029/2021GL093213, 2021.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van
Den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505,
https://doi.org/10.1038/nature10968, 2012.
Qi, M., Liu, Y., Liu, J., Cheng, X., Lin, Y., Feng, Q., Shen, Q., and Yu, Z.: A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations, Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, 2021.
Reeh, N., Mayer, C., Olesen, O. B., Christensen, E. L., and Thomsen, H. H.:
Tidal movement of Nioghalvfjerdsfjorden glacier, northeast Greenland:
Observation and modelling, Ann. Glaciol., 31, 111–117,
https://doi.org/10.3189/172756400781820408, 2000.
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.: The far
reach of ice-shelf thinning in Antarctica, Nat. Clim. Chang., 8, 53–57,
https://doi.org/10.1038/s41558-017-0020-x, 2018.
Rignot, E.: Changes in ice dynamics and mass balance of the Antarctic ice
sheet, Philos. T. Roy. Soc. A, 364, 1637–1655,
https://doi.org/10.1098/rsta.2006.1793, 2006.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504,
https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs Antarctic Grounding
Line from Differential Satellite Radar Interferometry, Version 2. Boulder,
Colorado USA, NASA Natl. Snow Ice Data Cent. Distrib. Act. Arch. Cent. [data set],
https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2. Boulder, Colorado USA, NASA Natl. Snow Ice Data
Cent. Distrib. Act. Arch. Cent. [data set],
https://doi.org/10.5067/D7GK8F5J8M8R, 2017.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, Proc. Natl. Acad. Sci., 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M.,
Greenbaum, J. S., and Blankenship, D. D.: Ocean heat drives rapid basal melt
of the Totten Ice Shelf, Sci. Adv., 2, e1601610,
https://doi.org/10.1126/sciadv.1601610, 2016.
Sandwell, D., Mellors, R., Tong, X., Wei, M., and Wessel, P.: Open radar
interferometry software for mapping surface Deformation, Eos, Trans. Am.
Geophys. Union, 92, 234–234, https://doi.org/10.1029/2011EO280002, 2011.
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and
Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Remote Sens.
Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Scheick, J.: icepyx: Python tools for obtaining and working with ICESat-2
data, GitHub [code], https://github.com/icesat2py/icepyx (last access: 9 October 2021), 2019.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth Surf., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007.
Silvano, A., Rintoul, S. R., Peña-Molino, B., and Williams, G. D.:
Distribution of water masses and meltwater on the continental shelf near the
Totten and Moscow University ice shelves, J. Geophys. Res.-Ocean., 122,
2050–2068, https://doi.org/10.1002/2016JC012115, 2017.
Smith, B., Fricker, H. A., Holschuh, N., Gardner, A. S., Adusumilli, S.,
Brunt, K. M., Csatho, B., Harbeck, K., Huth, A., Neumann, T., Nilsson, J.,
and Siegfried, M. R.: Land ice height-retrieval algorithm for NASA's
ICESat-2 photon-counting laser altimeter, Remote Sens. Environ., 233, 111352,
https://doi.org/10.1016/j.rse.2019.111352, 2019.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo
Nicholas Holschuh, F. S., Adusumilli, S., Brunt, K., Csatho, B., Harbeck,
K., Markus, T., Neumann, T., Siegfried, M. R., and Jay Zwally, H.: Pervasive
ice sheet mass loss reflects competing ocean and atmosphere processes,
Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845,
2020.
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S.,
Csathó, B. M., Holschuh, N., Nilsson, J., Paolo, F. S., and and the
ICESat-2 Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 4, NASA
Natl. Snow Ice Data Cent. Distrib. Act. Arch. Cent. [data set],
https://doi.org/10.5067/ATLAS/ATL06.004, 2021.
Tsai, V. C. and Gudmundsson, G. H.: An improved model for tidally modulated
grounding-line migration, J. Glaciol., 61, 216–222,
https://doi.org/10.3189/2015JoG14J152, 2015.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Zwally, H. J., Schutz, R., Dimarzio, J., and Hancock, D.: GLAS/ICESat L2
Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5), Version 34,
Natl. Snow Ice Data Cent. Distrib. Act. Arch. Cent. [data set],
https://nsidc.org/data/glah12/versions/34 (last access: 30 March 2019), 2014.
Short summary
The Totten and Moscow University glaciers in East Antarctica have the potential to make a significant contribution to future sea-level rise. We used a combination of different satellite measurements to show that the grounding lines have been retreating along the fast-flowing ice streams across these two glaciers. We also found two tide-modulated ocean channels that might open new pathways for the warm ocean water to enter the ice shelf cavity.
The Totten and Moscow University glaciers in East Antarctica have the potential to make a...