Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Supraglacial streamflow and meteorological drivers from southwest Greenland
Department of Geography, Rutgers, The State University of New Jersey,
New Brunswick, NJ 08901, USA
Åsa K. Rennermalm
Department of Geography, Rutgers, The State University of New Jersey,
New Brunswick, NJ 08901, USA
Sasha Z. Leidman
Department of Geography, Rutgers, The State University of New Jersey,
New Brunswick, NJ 08901, USA
Matthew G. Cooper
Department of Geography, University of California, Los Angeles, Los Angeles, CA 90095, USA
currently at: Atmospheric Sciences and Global Change Division, Pacific Northwest
National Laboratory, Richland, WA 99354, USA
Sarah W. Cooley
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Laurence C. Smith
Institute at Brown for Environment and Society, Brown University,
Providence, RI 02912, USA
Department of Earth, Environmental, and Planetary Sciences, Brown
University, Providence, RI 02912, USA
Dirk van As
Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350
Copenhagen, Denmark
Related authors
No articles found.
Chang Liao, Darren Engwirda, Matthew Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-398, https://doi.org/10.5194/essd-2023-398, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discrete Global Grid systems, or DGGs, are digital frameworks that help us organize information about our planet. Although scientists have used DGGs in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon Basin, which plays an important role in our planet's climate. These datasets may help us improve our water cycle models.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Sarah E. Esenther, Laurence C. Smith, Adam LeWinter, Lincoln H. Pitcher, Brandon T. Overstreet, Aaron Kehl, Cuyler Onclin, Seth Goldstein, and Jonathan C. Ryan
Geosci. Instrum. Method. Data Syst., 12, 215–230, https://doi.org/10.5194/gi-12-215-2023, https://doi.org/10.5194/gi-12-215-2023, 2023
Short summary
Short summary
Meltwater runoff estimates from the Greenland ice sheet contain uncertainty. To better understand ice sheet hydrology, we installed a weather station and river stage sensors along three proglacial rivers in a cold-bedded area of NW Greenland without firn, crevasse, or moulin influence. The first 3 years (2019–2021) of observations have given us a first look at the seasonal and annual weather and hydrological patterns of this understudied region.
Isatis M. Cintron-Rodriguez, Åsa K. Rennermalm, Susan Kaspari, and Sasha Leidman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-195, https://doi.org/10.5194/tc-2022-195, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow and ice melt driven by solar absorption is enhanced by the presence of light-absorbing particles (LAPs), such as black carbon (BC) and dust. Previous studies have ruled out LAP as an important Greenland's albedo reduction and accelerated mass loss rate factor. However, most simulations only take into consideration LAP direct effects. This study shows that taking into account LAP impact on snow metamorphism leads to albedo reductions 4 to 10 times larger than previously thought.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman
The Cryosphere, 15, 1627–1644, https://doi.org/10.5194/tc-15-1627-2021, https://doi.org/10.5194/tc-15-1627-2021, 2021
Short summary
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary
Short summary
The ERA5 reanalysis of the ECMWF replaced the ERA-Interim in August 2019 and has never been evaluated over Greenland. The aim was to evaluate the performance of ERA5 to simulate the near-surface climate of the Greenland Ice sheet (GrIS) against ERA-Interim and regional climate models with the help of in situ observations from the PROMICE dataset. We also highlighted that polar regional climate models are still a useful tool to study the GrIS climate compared to ERA5.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Short summary
Arctic sea ice and the Greenland Ice Sheet (GrIS) are melting later in the year due to a warming climate. Through analyses of weather station, climate model, and reanalysis data, physical links are evaluated between Baffin Bay open water duration and western GrIS melt conditions. We show that sub-Arctic air mass movement across this portion of the GrIS strongly influences late summer and autumn melt, while near-surface, off-ice winds inhibit westerly atmospheric heat transfer from Baffin Bay.
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li
The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, https://doi.org/10.5194/tc-12-3791-2018, 2018
Short summary
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Julienne C. Stroeve, John R. Mioduszewski, Asa Rennermalm, Linette N. Boisvert, Marco Tedesco, and David Robinson
The Cryosphere, 11, 2363–2381, https://doi.org/10.5194/tc-11-2363-2017, https://doi.org/10.5194/tc-11-2363-2017, 2017
Short summary
Short summary
As the sea ice has declined strongly in recent years there has been a corresponding increase in Greenland melting. While both are likely a result of changes in atmospheric circulation patterns that favor summer melt, this study evaluates whether or not sea ice reductions around the Greenland ice sheet are having an influence on Greenland summer melt through enhanced sensible and latent heat transport from open water areas onto the ice sheet.
Dirk van As, Andreas Bech Mikkelsen, Morten Holtegaard Nielsen, Jason E. Box, Lillemor Claesson Liljedahl, Katrin Lindbäck, Lincoln Pitcher, and Bent Hasholt
The Cryosphere, 11, 1371–1386, https://doi.org/10.5194/tc-11-1371-2017, https://doi.org/10.5194/tc-11-1371-2017, 2017
Short summary
Short summary
The Greenland ice sheet melts faster in a warmer climate. The ice sheet is flatter at high elevation, therefore atmospheric warming increases the melt area exponentially. For current climate conditions, we find that the ice sheet shape amplifies the total meltwater generation by roughly 60 %. Meltwater is not stored underneath the ice sheet, as previously found, but it does take multiple days for it to pass through the seasonally developing subglacial drainage channels, moderating discharge.
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727–741, https://doi.org/10.5194/tc-10-727-2016, https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Short summary
We identify and correct station-tilt-induced biases in insolation observed by automatic weather stations on the Greenland Ice Sheet. Without tilt correction, only 40 % of clear days have the correct solar noon time (±0.5 h). The largest hourly bias exceeds 20 %. We estimate the tilt angles based on solar geometric relationship between insolation observed on horizontal surfaces and that on tilted surfaces, and produce shortwave radiation and albedo that agree better with independent data sets.
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015, https://doi.org/10.5194/tc-9-2163-2015, 2015
E. Johansson, S. Berglund, T. Lindborg, J. Petrone, D. van As, L.-G. Gustafsson, J.-O. Näslund, and H. Laudon
Earth Syst. Sci. Data, 7, 93–108, https://doi.org/10.5194/essd-7-93-2015, https://doi.org/10.5194/essd-7-93-2015, 2015
Short summary
Short summary
This paper presents a hydrological and meteorological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model the hydrological system and constitutes an important platform in order to describe the exchange of water between the surface, active layer, the lake, and the underlying talik. The resulting hydrological model will be used as a basis for biogeochemical mass-balance and transport calculations of the terrestrial and limnic ecosystems.
S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman
The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015, https://doi.org/10.5194/tc-9-905-2015, 2015
J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick
The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014, https://doi.org/10.5194/tc-8-2031-2014, 2014
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014, https://doi.org/10.5194/tc-8-107-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Glacier Hydrology
Deep clustering in subglacial radar reflectance reveals subglacial lakes
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Reorganisation of subglacial drainage processes during rapid melting of the Fennoscandian Ice Sheet
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Challenges in predicting Greenland supraglacial lake drainages at the regional scale
Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers
A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream
Modelling the fate of surface melt on the Larsen C Ice Shelf
Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024, https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024, https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Adam Jake Hepburn, Christine F. Dow, Antti Ojala, Joni Mäkinen, Elina Ahokangas, Jussi Hovikoski, Jukka-Pekka Palmu, and Kari Kajuutti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2141, https://doi.org/10.5194/egusphere-2023-2141, 2023
Short summary
Short summary
Terrain formerly occupied by ice sheets in the last ice age allows us to parameterise models of basal water flow using terrain and data unavailable beneath current ice sheets. Using GlaDS, a 2D basal hydrology model, we explore the origin of murtoos, a specific landform found throughout Finland that is thought to mark the upper limit of channels beneath the ice. Our results validate many of the predictions for murtoo origin and demonstrate that such models can be used to explore past ice sheets.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
Léo Decaux, Mariusz Grabiec, Dariusz Ignatiuk, and Jacek Jania
The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, https://doi.org/10.5194/tc-13-735-2019, 2019
Short summary
Short summary
Due to the fast melting of glaciers around the world, it is important to characterize the evolution of the meltwater circulation beneath them as it highly impacts their velocity. By using very
high-resolution satellite images and field measurements, we modelized it for two Svalbard glaciers. We determined that for most of Svalbard glaciers it is crucial to include their surface morphology to obtain a reliable model, which is not currently done. Having good models is key to predicting our future.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Sammie Buzzard, Daniel Feltham, and Daniela Flocco
The Cryosphere, 12, 3565–3575, https://doi.org/10.5194/tc-12-3565-2018, https://doi.org/10.5194/tc-12-3565-2018, 2018
Short summary
Short summary
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf receives, but may also play a pivotal role in sudden ice shelf collapse such as that of the Larsen B Ice Shelf in 2002.
Here we simulate current and future melting on Larsen C, Antarctica’s most northern ice shelf and one on which lakes have been observed. We find that should future lakes occur closer to the ice shelf front, they may contain sufficient meltwater to contribute to ice shelf instability.
Thomas Lelandais, Édouard Ravier, Stéphane Pochat, Olivier Bourgeois, Christopher Clark, Régis Mourgues, and Pierre Strzerzynski
The Cryosphere, 12, 2759–2772, https://doi.org/10.5194/tc-12-2759-2018, https://doi.org/10.5194/tc-12-2759-2018, 2018
Short summary
Short summary
Scattered observations suggest that subglacial meltwater routes drive ice stream dynamics and ice sheet stability. We use a new experimental approach to reconcile such observations into a coherent story connecting ice stream life cycles with subglacial hydrology and bed erosion. Results demonstrate that subglacial flooding, drainage reorganization, and valley development can control an ice stream lifespan, thus opening new perspectives on subglacial processes controlling ice sheet instabilities.
Cited articles
Andreadis, K. M., Brinkerhoff, C. B., and Gleason, C. J.: Constraining the
assimilation of SWOT observations with hydraulic geometry relations, Water
Resour. Res., 56, 1–21, https://doi.org/10.1029/2019WR026611, 2020.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M.
P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature,
514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Ashmore, P. and Sauks, E.: Prediction of discharge from water surface width
in a braided river with implications for at-a-station hydraulic geometry,
Water Resour. Res., 42, 1–11, https://doi.org/10.1029/2005WR003993, 2006.
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. A.:
Short-term variability in Greenland Ice Sheet motion forced by time-varying
meltwater drainage: Implications for the relationship between subglacial
drainage system behavior and ice velocity, J. Geophys. Res.-Earth,
117, 1–17, https://doi.org/10.1029/2011JF002220, 2012.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox,
C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland
melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86,
https://doi.org/10.1038/nature12002, 2013.
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A.,
Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen,
S., and Hubbard, A.: Evolution of the subglacial drainage system beneath the
Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198,
https://doi.org/10.1038/ngeo1737, 2013.
Chandler, D. M., Wadham, J. L., Nienow, P. W., Doyle, S. H., Tedstone, A.
J., Telling, J., Hawkings, J., Alcock, J. D., Linhoff, B., and Hubbard, A.:
Rapid development and persistence of efficient subglacial drainage under 900 m-thick ice in Greenland, Earth Planet. Sci. Lett., 566, 116982,
https://doi.org/10.1016/j.epsl.2021.116982, 2021.
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan,
D., Legresy, B., and Harig, C.: The increasing rate of global mean sea-level
rise during 1993–2014, Nat. Clim. Chang., 7, 492–495,
https://doi.org/10.1038/nclimate3325, 2017.
Chow, V. T.: Handbook of Applied Hydrology: A Compendium of Water-Resources
Technology, McGraw-Hill Company, New York, 1964.
Chu, V. W.: Greenland ice sheet hydrology: A review, Prog. Phys. Geogr.,
38, 19–54, 2014.
Colgan, W., Steffen, K., McLamb, W. S., Abdalati, W., Rajaram, H., Motyka,
R., Phillips, T., and Anderson, R.: An increase in crevasse extent, West
Greenland: Hydrologic implications, Geophys. Res. Lett., 38, 1–7,
https://doi.org/10.1029/2011GL048491, 2011.
Cook, J. M., Hodson, A. J., and Irvine-Fynn, T. D. L.: Supraglacial
weathering crust dynamics inferred from cryoconite hole hydrology, Hydrol.
Process., 30, 433–446, https://doi.org/10.1002/hyp.10602, 2016.
Cooper, M.: Bare Ice Hydrologic Processes on the Greenland Ice Sheet
Ablation Zone, UCLA, ProQuest ID: Cooper_ ucla_0031D_19206, Merritt ID: ark:/13030/m52k1rf5, available at: https://escholarship.org/uc/item/2fc6r410 (last access: 12 May 2022), 2020.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Miège, C., Pitcher, L. H., Ryan, J. C., Yang, K., and Cooley, S. W.: Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone, The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, 2018.
Cullather, R. I., Nowicki, S. M. J., Zhao, B., and Koenig, L. S.: A
characterization of Greenland ice sheet surface melt and runoff in
contemporary reanalyses and a regional climate model, Front. Earth Sci., 4,
1–20, https://doi.org/10.3389/feart.2016.00010, 2016.
Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde,
D., and Bhatia, M. P.: Fracture propagation to the base of the Greenland ice
sheet during supraglacial lake drainage, Science, 320, 778–781,
https://doi.org/10.1126/science.1153360, 2008.
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., and Nienow, P. W.: The influence of hydrology on the dynamics of land-terminating sectors of the Greenland ice sheet, Front. Earth Sci., 7, 1–24, https://doi.org/10.3389/feart.2019.00010, 2019.
Dymond, J. R. and Christian, R.: Accuracy of discharge determined from a
rating curve, Hydrol. Sci. J., 27, 493–504,
https://doi.org/10.1080/02626668209491128, 1982.
Fausto, R. S., van As, D., Box, J. E., Colgan, W., Langen, P. L., and
Mottram, R. H.: The implication of nonradiative energy fluxes dominating
Greenland ice sheet exceptional ablation area surface melt in 2012, Geophys.
Res. Lett., 43, 2649–2658, https://doi.org/10.1002/2016GL067720, 2016.
Ferguson, R. I.: Hydraulics and hydraulic geometry, Prog. Phys. Geogr., 10,
1–31, 1986.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Flowers, G. E.: Hydrology and the future of the Greenland Ice Sheet, Nat.
Commun., 9, 1–4, https://doi.org/10.1038/s41467-018-05002-0, 2018.
Gallagher, M. R., Chepfer, H., Shupe, M. D. and Guzman, R.: Warm temperature
extremes across Greenland connected to clouds, Geophys. Res. Lett., 47,
1–10, https://doi.org/10.1029/2019GL086059, 2020.
Geological Survey of Denmark and Greenland (GEUS): KAN_L weather station data, Programme for Monitoring
of the Greenland Ice Sheet (PROMICE) and the Greenland Analogue Project
(GAP), http://www.promice.dk, last access: 12 May 2022.
Gleason, C. J.: Hydraulic geometry of natural rivers: A review and future
directions, Prog. Phys. Geogr., 39, 337–360,
https://doi.org/10.1177/0309133314567584, 2015.
Gleason, C. J., Smith, L. C., Chu, V. W., Legleiter, C. J., Pitcher, L. H., Overstreet,
B. T., Rennermalm, A. K., Forster, R. R., and Yang, K.: Characterizing
supraglacial meltwater channel hydraulics on the Greenland Ice Sheet from in
situ observations, Earth Surf Proc. Land., 41, 2111–2122,
https://doi.org/10.1002/esp.3977, 2016.
Gleason, C. J., Yang, K., Feng, D., Smith, L. C., Liu, K., Pitcher, L. H., Chu, V. W., Cooper, M. G., Overstreet, B. T., Rennermalm, A. K., and Ryan, J. C.: Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network, The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, 2021.
Herschy, R.: The stage-discharge relation, Flow Meas. Instrum., 4,
11–15, 1993a.
Herschy, R.: The velocity-area method, Flow Meas. Instrum., 4, 7–10,
https://doi.org/10.1016/0955-5986(93)90004-3, 1993b.
Herschy, R.: The analysis of uncertainties in the stage-discharge relation,
Flow Meas. Instrum., 5, 188–190, https://doi.org/10.1016/0955-5986(94)90018-3, 1994.
Herschy, R. W.: The uncertainty in a current meter measurement, Flow Meas.
Instrum., 13, 281–284, https://doi.org/10.1016/S0955-5986(02)00047-X, 2002.
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, Earth Planet. Sci. Lett., 371–372, 16–25,
https://doi.org/10.1016/j.epsl.2013.04.022, 2013.
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Sci. Adv.,
3, p.e1700584, https://doi.org/10.1126/sciadv.1700584, 2017.
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill,
J. A.: Links between acceleration, melting, and supraglacial lake drainage
of the western Greenland Ice Sheet, J. Geophys. Res.-Earth, 116,
1–16, https://doi.org/10.1029/2010JF001934, 2011.
Holmes, G. W.: Morphology and hydrology of the Mint Julep area, southwest
Greenland, in: Project Mint Julep: Investigation of Smooth Ice Areas of the
Greenland Ice Cap, 1953, Part II: Special Scientific Reports, Arctic, Desert, Tropic Information Center, Research Studies Institute, Air University, 1–50, 1955.
Izeboud, M., Lhermitte, S., Van Tricht, K., Lenaerts, J. T. M., Van Lipzig,
N. P. M., and Wever, N.: The spatiotemporal variability of cloud radiative
effects on the Greenland Ice Sheet surface mass balance, Geophys. Res.
Lett., 47, 1–9, https://doi.org/10.1029/2020GL087315, 2020.
Karlstrom, L. and Yang, K.: Fluvial supraglacial landscape evolution on the Greenland Ice Sheet, Geophys. Res. Lett., 43, 2683–2692, https://doi.org/10.1002/2016GL067697, 2016.
Karlstrom, L., Zok, A., and Manga, M.: Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia, The Cryosphere, 8, 537–546, https://doi.org/10.5194/tc-8-537-2014, 2014.
King, L.: Comparing two methods of remotely estimating moulin discharge on
the Greenland ice sheet, J. Glaciol., 64, 850–854,
https://doi.org/10.1017/jog.2018.65, 2018.
Knighton, A. D.: Channel form and flow characteristics of supraglacial
streams, Austre Okstindbreen, Norway, Arct. Alp. Res., 13, 295,
https://doi.org/10.2307/1551036, 1981.
Lampkin, D. J. and VanderBerg, J.: Supraglacial melt channel networks in the
Jakobshavn Isbræ region during the 2007 melt season, Hydrol. Process.,
28, 6038–6053, https://doi.org/10.1002/hyp.10085, 2014.
Leidman, S. Z., Rennermalm, Å. K., Muthyala, R., Guo, Q., and Overeem,
I.: The Presence and Widespread Distribution of Dark Sediment in Greenland
Ice Sheet Supraglacial Streams Implies Substantial Impact of Microbial
Communities on Sediment Deposition and Albedo, Geophys. Res. Lett., 48, e2020GL088444, https://doi.org/10.1029/2020GL088444, 2021.
Leopold, L. and Maddock, T.: The hydraulic geometry of stream channels and
some physiographic implications, US Government Printing Office, Washington D. C., 1953.
Marston, R. A.: Supraglacial stream dynamics on the Juneau Icefield, Ann.
Assoc. Am. Geogr., 73, 597–608, https://doi.org/10.1111/j.1467-8306.1983.tb01861.x,
1983.
Mattingly, K. S., Mote, T. L., and Fettweis, X.: Atmospheric river impacts on
Greenland Ice Sheet surface mass balance, J. Geophys. Res.-Atmos., 123,
8538–8560, https://doi.org/10.1029/2018JD028714, 2018.
McGrath, D., Colgan, W., Steffen, K., Lauffenburger, P., and Balog, J.:
Assessing the summer water budget of a moulin basin in the sermeq avannarleq
ablation region, Greenland ice sheet, J. Glaciol., 57, 954–964,
https://doi.org/10.3189/002214311798043735, 2011.
Mernild, S. H., Hasholt, B., and Liston, G. E.: Water flow through
Mittivakkat Glacier, Ammassalik Island, SE Greenland, Geogr. Tidsskr.,
106, 25–43, https://doi.org/10.1080/00167223.2006.10649543, 2006.
Mernild, S. H., Liston, G. E., van As, D., Hasholt, B., and Yde, J. C.:
High-resolution ice sheet surface mass-balance and spatiotemporal runoff
simulations: Kangerlussuaq, west Greenland, Arctic, Antarct. Alp. Res.,
50, S100008, https://doi.org/10.1080/15230430.2017.1415856, 2018.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci.
USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Moustafa, S. E., Rennermalm, A. K., Smith, L. C., Miller, M. A., Mioduszewski, J. R., Koenig, L. S., Hom, M. G., and Shuman, C. A.: Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet, The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015, 2015.
Munro, D. S.: Delays of supraglacial runoff from differently defined
microbasin areas on the Peyto Glacier, Hydrol. Process., 25, 2983–2994,
https://doi.org/10.1002/hyp.8124, 2011.
Muthyala, R., Rennermalm, A., Leidman, S., Cooper, M., Cooley, S., and Smith, L.C.: 62 days of Supraglacial streamflow from June–August, 2016 over southwest Greenland, Arctic Data Center [data set], https://doi.org/10.18739/A2XW47X5F, 2022.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018.
Pitcher, L. H. and Smith, L. C.: Supraglacial streams and rivers, Annu. Rev.
Earth Planet. Sci., 421–452, https://doi.org/10.1146/annurev-earth-053018-060212, 2019.
Rennermalm, A. K., Moustafa, S. E., Mioduszewski, J., Chu, V. W., Forster, R.
R., Hagedorn, B., Harper, J. T., Mote, T. L., Robinson, D. a, Shuman, C. a,
Smith, L. C., and Tedesco, M.: Understanding Greenland ice sheet hydrology
using an integrated multi-scale approach, Environ. Res. Lett., 8, 015017,
https://doi.org/10.1088/1748-9326/8/1/015017, 2013.
Ryan, J. C., Smith, L. C., Van As, D., Cooley, S. W., Cooper, M. G.,
Pitcher, L. H., and Hubbard, A.: Greenland Ice Sheet surface melt amplified
by snowline migration and bare ice exposure, Sci. Adv., 5, 1–11,
https://doi.org/10.1126/sciadv.aav3738, 2019.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability,
Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Shepherd, A., Hubbard, A., Nienow, P., King, M. A., McMillan, M., and
Joughin, I.: Greenland ice sheet motion coupled with daily melting in late
summer, Geophys. Res. Lett., 36, 2–5, https://doi.org/10.1029/2008GL035758, 2009.
Smith, L. C., Isacks, B. L., Bloom, A. L., and Murray, A. B.: Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: potential application to ungaged basins, Water Resour. Res., 32, 2021–2034, https://doi.org/10.1029/96WR00752, 1996.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D.
C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, P.
Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco,
M., Jeyaratnam, J., van As, D., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., Langen, P. L., Cullather, R. I., Zhao, B., Willis, M. J.,
Hubbard, A., Box, J. E., Jenner, B. A., and Behar, A. E.: Direct measurements
of meltwater runoff on the Greenland ice sheet surface, P. Natl. Acad.
Sci., 114, E10622-31, https://doi.org/10.1073/pnas.1707743114, 2017.
Smith, L. C., Andrews, L. C., Pitcher, L. H., Overstreet, B. T., Rennermalm,
K., Cooper, M. G., Cooley, S. W., Ryan, J. C., Miège, C., Kershner, C., and Simpson, C. E.: Supraglacial River Forcing of Subglacial Water Storage
and Diurnal Ice Sheet Motion, Geophys. Res. Lett., 48, e2020GL091418, https://doi.org/10.1029/2020GL091418, 2021.
Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Tedstone, A., and King, M. A.: Winter motion mediates dynamic response of the Greenland
Ice Sheet to warmer summers, Geophys. Res. Lett., 40, 3940–3944,
https://doi.org/10.1002/grl.50764, 2013.
Solinst Canada Ltd.: Solinst 3001 levelogger series user guide, 1–85, available at: https://www.solinst.com/products/dataloggers-and-telemetry/3001-levelogger-series/operating-instructions/user-guide/3001-user-guide.pdf (last access: 12 May 2022), 2020.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and
Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by
efficient subglacial drainage, Nature, 469, 521–524,
https://doi.org/10.1038/nature09740, 2011.
Takeuchi, N., Koshima, S., Yoshimura, Y., Seko, K., and Fujita, K.:
Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier
Central Nepal, Bull. Glaciol. Res., 17, 51–59, 2000.
Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Goldberg, D., and
Hanna, E.: Decadal slowdown of a land-terminating sector of the Greenland
Ice Sheet despite warming, Nature, 526, 692–695,
https://doi.org/10.1038/nature15722, 2015.
van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the melville bay region of northwest greenland, J.
Glaciol., 57, 208–220, https://doi.org/10.3189/002214311796405898, 2011.
van As, D. and Fausto, R. S.: Programme for Monitoring of the Greenland Ice
Sheet (PROMICE): First temperature and ablation records, Geol. Surv. Denmark
Greenl. Bull., 23, 73–76, https://doi.org/10.34194/geusb.v23.4876, 2011.
van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., van den Broeke, M. R., and Fausto, R. S.: Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations, The Cryosphere, 6, 199–209, https://doi.org/10.5194/tc-6-199-2012, 2012.
van As, D., Hasholt, B., Ahlstrøm, A. P., Box, J. E., Cappelen, J.,
Colgan, W., Fausto, R. S., Mernild, S. H., Mikkelsen, A. B., Noël, B. P.
Y., Petersen, D., and van den Broeke, M. R.: Reconstructing Greenland Ice
Sheet meltwater discharge through the Watson River (1949–2017), Arctic,
Antarct. Alp. Res., 50, https://doi.org/10.1080/15230430.2018.1433799, 2018.
van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P.,
Reijmer, C. H., Donker, J. J. A., and Oerlemans, J.: Large and Rapid
Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice
Sheet, Science, 321, 111–113, https://doi.org/10.1126/science.1158540, 2008.
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, 2011.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V.,
L'Ecuyer, T. S., Noël, B., Van Den Broeke, M. R., Turner, D. D., and Van
Lipzig, N. P. M.: Clouds enhance Greenland ice sheet meltwater runoff, Nat.
Commun., 7, 1–9, https://doi.org/10.1038/ncomms10266, 2016.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Wang, W., Zender, C. S., van As, D., Fausto, R. S., and Laffin, M. K.:
Greenland Surface Melt Dominated by Solar and Sensible Heating, Geophys.
Res. Lett., 48, 1–10, https://doi.org/10.1029/2020GL090653, 2021.
WMO: Manual on stream gauging, WMO No. 1044, 2010.
Yang, K. and Smith, L. C.: Supraglacial streams on the greenland ice sheet
delineated from combined spectral-shape information in high-resolution
satellite imagery, IEEE Geosci. Remote S., 10, 801–805,
https://doi.org/10.1109/LGRS.2012.2224316, 2013.
Yang, K. and Smith, L. C.: Internally drained catchments dominate
supraglacial hydrology of the southwest Greenland Ice Sheet, J. Geophys.
Res.-Earth, 121, 1891–1910, https://doi.org/10.1002/2016JF003927, 2016.
Yang, K., Smith, L. C., Karlstrom, L., Cooper, M. G., Tedesco, M., van As, D., Cheng, X., Chen, Z., and Li, M.: A new surface meltwater routing model for use on the Greenland Ice Sheet surface, The Cryosphere, 12, 3791–3811, https://doi.org/10.5194/tc-12-3791-2018, 2018.
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The...