Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5387-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5387-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Elena Zakharova
CORRESPONDING AUTHOR
Water Problems Institute, Russian Academy of Science, Moscow, Russia
EOLA, Toulouse, France
Svetlana Agafonova
Department of Land Hydrology, Moscow State University, Moscow, Russia
Claude Duguay
Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
H2O Geomatics, Waterloo, Canada
Natalia Frolova
Department of Land Hydrology, Moscow State University, Moscow, Russia
Alexei Kouraev
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Related authors
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
Eugeny A. Zakharchuk, Natalia Tikhonova, Elena Zakharova, and Alexei V. Kouraev
Ocean Sci., 17, 543–559, https://doi.org/10.5194/os-17-543-2021, https://doi.org/10.5194/os-17-543-2021, 2021
Short summary
Short summary
Investigation of free sea level oscillations is important for understanding of specifics of oceanographic processes and for their identification. Based on numerical experiments with the 3-D INMOM hydrodynamic model, we demonstrated that after cessation of atmospheric forcing, the water masses of the Baltic Sea return to equilibrium state as in the form of barotropic progressive–standing waves with 13–44 h periods, as in the form of baroclinic low-frequency waves with periods of 89 and 358 d.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Eugeny A. Zakharchuk, Natalia Tikhonova, Elena Zakharova, and Alexei V. Kouraev
Ocean Sci., 17, 543–559, https://doi.org/10.5194/os-17-543-2021, https://doi.org/10.5194/os-17-543-2021, 2021
Short summary
Short summary
Investigation of free sea level oscillations is important for understanding of specifics of oceanographic processes and for their identification. Based on numerical experiments with the 3-D INMOM hydrodynamic model, we demonstrated that after cessation of atmospheric forcing, the water masses of the Baltic Sea return to equilibrium state as in the form of barotropic progressive–standing waves with 13–44 h periods, as in the form of baroclinic low-frequency waves with periods of 89 and 358 d.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Cited articles
Agafonova, S. A. and Vasilenko, A. N.: Hazardous ice phenomena in rivers of
the Russian arctic zone under current climate conditions and the safety of
water use, Geogr. Environ. Sustain., 13, 43–51, https://doi.org/10.24057/2071-9388-2020-12, 2020.
Antonova, S., Duguay, C. R., Kääb, A., Heim, B., Langer, M., Westermann, S., and Boike, J.: Monitoring ice phenology and bedfast ice in
lakes of the Lena River Delta using TerraSAR-X backscatter and coherence time series, Remote Sens., 8, 903, https://doi.org/10.3390/rs8110903, 2016.
Atwood, D. K., Gunn, G. E., Roussi, C., Wu, J., Duguay, C. R., and Sarabandi,
K.: Microwave backscatter from Arctic lake ice and polarimetric implications, IEEE T. Geosci. Remote, 53, 5972–5982, https://doi.org/10.1109/TGRS.2015.2429917, 2015.
AVISO+: Jason-2 and Jason-3 geophysical data records (GDR), AVISO+ data portal [data set], https://www.aviso.altimetry.fr/es/data/data-access.html, last access: 2 December 2021).
Bamber, J. L.: Ice sheet altimeter processing scheme, Int. J. Remote Sens., 15, 925–938, https://doi.org/10.1080/01431169408954125, 1994.
Beaton, A., Whaley, R., Corston, K., and Kenny, F.: Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of
operational flood monitoring in Northern Ontario, Remote Sens. Environ., 224, 352–364, https://doi.org/10.1016/j.rse.2019.02.011, 2019.
Beckers, J. F., Casey, J. A., and Haas, C.: Retrievals of lake ice thickness
from Great Slave Lake and Great Bear Lake using CryoSat-2, IEEE T. Geosci. Remote, 55, 3708–3720, https://doi.org/10.1109/TGRS.2017.2677583, 2017.
Beltaos, S.: Hydrodynamic characteristics and effects of river waves caused by ice jam releases, Cold Reg. Sci. Technol., 85, 42–55, https://doi.org/10.1016/j.coldregions.2012.08.003, 2013.
Beltaos, S., Carter, T., Rowsell, R., and DePalmac, S. G. S.: Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: Field measurements and initial quantification, Cold Reg. Sci. Technol., 149, 16–28, https://doi.org/10.1016/j.coldregions.2018.01.013, 2018.
Berry, P. A. M., Garlick, J. D., Freeman, J. A., and Mathers, E. L.: Global
inland water monitoring from multi-mission altimetry, Geophys. Res. Lett., 32, L16401, https://doi.org/10.1029/2005GL022814, 2005.
Brown, G. S.: The average impulse response of a rough surface and its
applications, IEEE J. Ocean Eng., 2, 67–74, https://doi.org/10.1109/JOE.1977.1145328, 1977.
Chaouch, N., Temimi, M., Romanov, P., Cabrera, R., McKillop, G., and
Khanbilvardi, R.: An automated algorithm for river ice monitoring over the
Susquehanna River using the MODIS data, Hydrol. Process., 28, 62–73,
https://doi.org/10.1002/hyp.9548, 2014.
Chu, T. and Lindenschmidt, K.-E.: Integration of space-borne and air-borne
data in monitoring river ice processes in the Slave River, Canada, Remote
Sens. Environ., 181, 65–81, https://doi.org/10.1016/j.rse.2016.03.041, 2016.
Cooley, S. W. and Pavelsky, T. M.: Spatial and temporal patterns in Arctic
river ice breakup revealed by automated ice detection from MODIS imagery,
Remote Sens. Environ., 175, 310–322, https://doi.org/10.1016/j.rse.2016.01.004, 2016.
Du, J., Kimball, J. S., Duguay, C. R., Kim, Y., and Watts, J.: Satellite
microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015, The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, 2017.
Duguay, C. R., Pultz, T. J., Lafleur, P. M., and Drai, D.: RADARSAT backscatter characteristics of ice growing on shallow sub-arctic lakes, Churchill, Manitoba, Canada, Hydrol. Process., 16, 1631–1644, https://doi.org/10.1002/hyp.1026, 2002.
Duguay, C. R., Bernier, M., Gauthier, Y., and Kouraev, A.: Remote sensing of
lake and river ice, in: Remote Sensing of the Cryosphere, edited by: Tedesco, M., Wiley-Blackwell, Oxford, UK, 273–306, ISBN 13:978-1118368855, 2015.
Duguay, C. R., Zakharova, E. A., Kouraev, A. V., Kheyrollah Pour, H., and
Hoekstra, M.: Retrieval of ice thickness on large northern lakes from Jason-2 data, in: POLAR2018: Abstract Proceedings, Open Science Conference, Davos, 19–23 June 2018, Switzerland, Abstract No. 2638, p. 46, 2018.
ESA: ENVISAT RA2/MWR Product Handbook, RA2/MWR Products User Guide, available at: https://earth.esa.int/eogateway/documents/20142/37627/Envisat-RA-2-Level-2-Product-Handbook.pdf (last access: 2 December 2021), 2002.
Ettema, R.: Review of alluvial-channel responses to river ice, J. Cold Reg. Eng., 16, 191–217, https://doi.org/10.1061/(ASCE)0887-381X(2002)16:4(191), 2002.
Fu, L.-L. and Cazenave, A.: Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Academic Press, San Diego, 1–495, ISBN 0080516580, 9780080516585, 1991.
Ginzburg, B. M.: Probabilistic characteristics of freeze-up and breakup dates
on rivers and reservoirs of the Soviet Union, Hydrometeoizdat, Leningrad, p. 110, 1973.
Gohlke, C.: Unofficial Windows Binaries for Python Extension Packages [data set], https://www.lfd.uci.edu/~gohlke/pythonlibs/, last access: 2 December 2021.
Guerreiro K., Fleury, S., Zakharova, E., Rémy, F., and Kouraev, A.: Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and
SARAL/AltiKa missions, Remote Sens. Environ., 186, 339–349,
https://doi.org/10.1016/j.rse.2016.07.013, 2016.
Gunn G. E., Duguay, C. R., Brown, L. C., King, J. M. L., Atwood, D., and Kasurak, A.: Freshwater lake ice thickness derived using surface-based X- and Ku-band FMCW scatterometers, Cold Reg. Sci. Technol., 120, 115–126, https://doi.org/10.1016/j.coldregions.2015.09.012, 2015.
Gunn, G. E., Duguay, C. R., Atwood, D. K., King, J., and Toose, P.: Observing
scattering mechanisms of bubbled freshwater lake ice using polarimetric
RADARSAT-2 (C-band) and UW-Scat (X- and Ku-bands), IEEE T. Geosci. Remote, 56, 2887–2903, https://doi.org/10.1109/TGRS.2017.2786158, 2018.
Hiks, F.: An overview of river ice problems: CRIPE07 guest editorial, Cold Reg. Sci. Technol., 55, 175–185, https://doi.org/10.1016/j.coldregions.2008.09.006, 2009.
Instructions on Safety Organisation: Of rivers' and lakes' crossing, RD 34.03.221, INFORMENRGO, Moscow, 1969.
Jeffries, M. O., Morris, K., and Kozlenko, N.: Chapter 4 – ice characteristics and processes, and remote sensing of frozen Rivers and
lakes, in: Remote Sensing in Northern Hydrology: Measuring Environmental Change, edited by: Duguay, C. R. and Pietroniro, A., American Geophysical
Union, Washington, DC, 63–90, ISBN 13:978-0-87590-428-3, 2005.
Jeffries, M. O., Morris, K., and Duguay, C. R.: State of the earth's cryosphere at the beginning of the 21st century: glaciers, global snow cover, floating ice, and permafrost and periglacial environments – floating ice: lake ice and river ice, in: Satellite Image Atlas of Glaciers of the World, edited by: Williams, R. S. and Ferrigno, J. G., USGS, Reston, VA, A381–A424, https://doi.org/10.3133/pp1386A, 2012.
Kang, K.-K., Duguay, C. R., and Howell, S. E. L.: Estimating ice phenology on
large northern lakes from AMSR-E: Algorithm development and application to
Great Bear Lake and Great Slave Lake, Canada, The Cryosphere, 6, 235–254,
https://doi.org/10.5194/tc-6-235-2012, 2012.
Kang, K.-K., Duguay, C. R., Lemmetyinen, J., and Gel, Y.: Estimation of ice
thickness on large northern lakes from AMSR-E brightness temperature measurements, Remote Sens. Environ., 150, 1–19, https://doi.org/10.1016/j.rse.2014.04.016, 2014.
Kheyrollah Pour, H., Duguay, C. R., Scott, A., and Kang, K.-K.: Improvement
of lake ice thickness retrieval from MODIS satellite data using a thermodynamic model, IEEE T. Geosci. Remote, 55, 5956–5965, https://doi.org/10.1109/TGRS.2017.2718533, 2017.
King, J. M. L., Kelly, R., Kasurak, A., Duguay, C., Gunn, G., and Mead, J. B.: UW-Scat – ground-based dual frequency scatterometry for observation of snow processes, IEEE Geosci. Remote Sens. Lett., 10, 528–532, https://doi.org/10.1109/LGRS.2012.2212177, 2013.
King, J. M. L., Kelly, R., Kasurak, A., Duguay, C., Gunn, G., Rutter, N.,
Watts, T., and Derksen, C.: Spatio-temporal influence of tundra snow properties on Ku-band (17.2 GHz) backscatter, J. Glaciol., 61, 267–279, https://doi.org/10.3189/2015JoG14J020, 2015.
Kouraev, A. V., Zakharova, E. A., Samain, O., Mognard, N. M., and Cazenave, A.: Ob' River discharge from TOPEX/Poseidon satellite altimetry (1992–2002),
Remote Sens. Environ., 93, 238–245, https://doi.org/10.1016/j.rse.2004.07.007, 2005.
Kouraev, A. V., Semovski, S. V., Shimaraev, M., Mognard, N. M., Legrésy, B., and Rémy F.: Observations of Lake Baikal ice from satellite altimetry and radiometry, Remote Sens. Environ., 108, 240–253, https://doi.org/10.1016/j.rse.2006.11.010, 2007.
Kouraev, A. V., Zakharova, E. A., Rémy, F., and Suknev, A. Y.: Study of
Lake Baikal ice cover from radar altimetry and in situ observations, Mar.
Geod., 38, 477–486, https://doi.org/10.1080/01490419.2015.1008155, 2015.
Kouraev, A. V., Zakharova, E. A., Kostianoy, A. G., Shimaraev, M. N., Desinov, L. V., Petrov, E. A., Hall, N. M. J., Rémy, F., and Suknev, A. Y.: Giant ice rings in southern Baikal: multi-satellite data help to study ice cover dynamics and eddies under ice, The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, 2021.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice
freeboard retrieval algorithm through the use of waveform fitting, The
Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Larue, F., Picard, G., Aublanc, J., Arnaud, L., Robledano-Perez, A., Le Meur, E., Favier, V., Jourdain, B., Savarino, J., and Thibaut, P.: Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT), Remote Sens. Environ., 263, 112534, https://doi.org/10.1016/j.rse.2021.112534, 2021.
Leconte, R., Daly, S., Gauthier, Y., Yankielun, N., Bérubé, F., and
Bernier, M.: A controlled experiment to retrieve freshwater ice characteristics from an FM-CW radar system, Cold Reg. Sci. Technol., 55, 212–220, 2009.
Legrésy, B. and Rémy, F.: Surface characteristics of the Antarctic
ice sheet and altimetric observations, J. Glaciol., 43, 265–275, https://doi.org/10.3189/S002214300000321X, 1997.
Mermoz, S., Allain, S., Bernier, M., and Pottier, E.: Investigation of Radarsat-2 and TerraSAR-X data for river ice classification, in: IEEE
International Geoscience and Remote Sensing Symposium, Cape Town, II-29–II-32, https://doi.org/10.1109/IGARSS.2009.5417991, 2009.
Mermoz, S., Allain-Bailhache, S., Bernier, M., Pottier, E., van der Sanden,
J. J., and Chokmani, K.: Retrieval of river ice thickness from C-band PolSAR
data, IEEE T. Geosci. Remote, 52, 3052–3062, https://doi.org/10.1109/TGRS.2013.2269014, 2013.
Michailovsky, C. I., McEnnis, S., Berry, P. A. M., Smith, R., and Bauer-Gottwein, P.: River monitoring from satellite radar altimetry in the
Zambezi river basin, Hydrol. Earth Syst. Sci., 16, 2181–2192,
https://doi.org/10.5194/hess-16-2181-2012, 2012.
Muhammad, P., Duguay, C. R., and Kang, K.-K.: Monitoring ice break-up on the
Mackenzie River using remote sensing, The Cryosphere, 10, 569–584,
https://doi.org/10.5194/tc-10-569-2016, 2016.
Murfitt, J. and Duguay, C. R.: 50 years of lake ice research from active
microwave remote sensing: Progress and prospects, Remote Sens. Environ., 264, 112616, https://doi.org/10.1016/j.rse.2021.112616, 2021.
USGS: Landsat Science project, USGS [data set], https://earthexplorer.usgs.gov/, last access: 2 December 2021.
Nilsson, J., Vallelonga, P., Simonsen, S. B., Sorensen, L. S., Forsberg, R.,
Dahl-Jensen, D., Hirabayashi, M., Goto-Azuma, K., Hvidberg, C. S., Kjaer, H. A., and Satow, K.: Greenland 2012 melt event effects on CryoSat-2 radar
altimetry, Geophys. Res. Lett., 42, 3919–3926, https://doi.org/10.1002/2015GL063296, 2015.
Pavelsky, T. M. and Smith, L. C.: Spatial and temporal patterns in Arctic
river ice breakup observed with MODIS and AVHRR time series, Remote Sens. Environ., 93, 328–338, https://doi.org/10.1016/j.rse.2004.07.018, 2004.
Picard, R. and Cook, R.: Cross-validation of regression models, J. Am. Stat. Assoc., 79, 575–583, https://doi.org/10.2307/2288403, 1984.
Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B., Duguay, C., Korhola, A.,
McNamara, J., Pienitz, R., Vincent, W. F., Vuglinsky, V., and Weyhenmeyer,
G. A.: Past and future changes in Arctic lake and river ice, Ambio, 40, 53–62, https://doi.org/10.1007/s13280-011-0216-7, 2011a.
Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B., Bowden, W., Duguay, C.,
Korhola, A., McNamara, J., Vincent, W. F., Vuglinsky, V., Anthony, K., and
Weyhenmeyer, G. A.: Effects of changes in Arctic lake and river ice, Ambio, 40, 63–74, https://doi.org/10.1007/s13280-011-0217-6, 2011b.
Prowse, T. D.: River-ice ecology: part B. Biological aspects, J. Cold Reg. Eng., 15, 17–33, https://doi.org/10.1061/(ASCE)0887-381X(2001)15:1(17), 2001.
Prowse, T. D., Bonsal, B. R., Duguay, C. R., and Lacroix, M. P.: River-ice
break-up/freeze-up: A review of climatic drivers, historical trends, and
future predictions, Ann. Glaciol., 46, 443–451, 2007.
Rémy, F., Flament, T., Blarel, F., and Benveniste, J.: Radar altimetry
measurements over Antarctic ice sheet: a focus on antenna polarization and
change in backscatter problems, Adv. Space Res., 50, 998–1006, https://doi.org/10.1016/j.asr.2012.04.003, 2012.
Slater, T., Shepherd, A., McMillan, M., Armitage, T. W. K., Otosaka, I., and
Arthern, R. J.: Compensating changes in the penetration depth of pulse-limited radar altimetry over the Greenland ice sheet, IEEE T. Geosci. Remote, 57, 9633–9642, https://doi.org/10.1109/TGRS.2019.2928232, 2019.
Sobiech, J. and Dierking, W.: Observing lake- and river-ice decay with SAR:
advantages and limitations of the unsupervised k-means classification approach, Ann. Glaciol., 54, 65–72, https://doi.org/10.3189/2013AoG62A037, 2013.
Sun, W. and Trevor, B.: A stacking ensemble learning framework for annual
river ice breakup dates, J. Hydrol., 561, 636–650, https://doi.org/10.1016/j.jhydrol.2018.04.008, 2018.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing: Active and Passive, in: Radar Remote Sensing and Surface Scattering and Emission Theory, vol. 2, Addison-Wesley, Norwood, MA, USA, 1986.
Unterschultz, K., van der Sanden, J., and Hicks, F.: Potential of RADARSAT-1
for the monitoring of river ice: Results of a case study on the Athabasca
River at Fort McMurray, Canada, Cold Reg. Sci. Technol., 55, 238–248, https://doi.org/10.1016/j.coldregions.2008.02.003, 2009.
van der Sanden J., Drouin, H., and Geldsetzer, T.: An automated procedure to
map breaking river ice with C-band HH SAR data, Remote Sens. Environ., 252, 112119, https://doi.org/10.1016/j.rse.2020.112119, 2021.
Vuglinsky, V. and Valatin, D.: Changes in ice cover duration and maximum ice
thickness for rivers and lakes in the Asian part of Russia, Nat. Resour., 9, 73–87, https://doi.org/10.4236/nr.2018.93006, 2018.
Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V.: Ku-band radar penetration into snow cover on Arctic sea ice using airborne
data, Ann. Glaciol., 52, 197–205, https://doi.org/10.3189/172756411795931589, 2011.
Zakharova, E. A., Kouraev, A. V., Rémy, F., Zemtsov, V. A., and Kirpotin,
S. N.: Seasonal variability of the Western Siberia wetlands from satellite
radar altimetry, J. Hydrol., 512, 366–378, https://doi.org/10.1016/j.jhydrol.2014.03.002, 2014.
Zakharova, E. A., Kouraev, A. V., Guillaso, S., Garestier, F., Desyatkin, R. V., and Desyatkin, A. R.: Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: importance for agriculture and human life, Sci. Total Environ., 615, 1290–1304, https://doi.org/10.1016/j.scitotenv.2017.09.059, 2018.
Zakharova, E. A., Krylenko, I. N., and Kouraev, A. V.: Use of non-polar orbiting satellite radar altimeters of the Jason series for estimation of river input to the Arctic Ocean, J. Hydrol., 568, 322–333,
https://doi.org/10.1016/j.jhydrol.2018.10.068, 2019.
Zakharova, E. A., Nielsen, K., Kamenev, G., and Kouraev, A.: River discharge
estimation from radar altimetry: Assessment of satellite performance, river
scales and methods, J. Hydrol., 583, 124561, https://doi.org/10.1016/j.jhydrol.2020.124561, 2020.
Zhang, F., Li, Z., and Lindenschmidt, K.-E.: Potential of RADARSAT-2 to improve ice thickness calculations in remote, poorly accessible areas: A case study on the Slave River, Canada, Can. J. Remote Sens., 45, 234–245, https://doi.org/10.1080/07038992.2019.1567304, 2019.
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
The paper investigates the performance of altimetric satellite instruments to detect river ice...