Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Centre of Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
Valentin Dall'Alba
Centre of Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
Przemysław Juda
Centre of Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
Julien Straubhaar
Centre of Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
Philippe Renard
Centre of Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021, https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Tanguy Racine, Celia Trunz, Julien Straubhaar, Stéphane Jaillet, and Philippe Renard
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-194, https://doi.org/10.5194/essd-2025-194, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Karst phenomena arise through dissolution and the resulting landscapes are characterised by caves which focus the transport of water underground. To better understand geometry of these conduits at various scales, we mapped caves with laser scanners and built models of the walls to constitute the KarstConduitCatalogue. These mapping techniques allow us to measure cave geometries accurately. This paper describes how we acquired and curated the dataset, and explores possible geoscientific uses.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021, https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.
Cited articles
Beniston, M.: Impacts of climatic change on water and associated economic
activities in the Swiss Alps, J. Hydrol., 412–413, 291–296,
https://doi.org/10.1016/j.jhydrol.2010.06.046,
2012. a
Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014. a
Bohleber, P., Sold, L., Hardy, D. R., Schwikowski, M., Klenk, P., Fischer, A., Sirguey, P., Cullen, N. J., Potocki, M., Hoffmann, H., and Mayewski, P.: Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field, The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, 2017. a
Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., and Snooke, N.: High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control, The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019, 2019. a
Dagasan, Y., Erten, O., Renard, P., Straubhaar, J., and Topal, E.:
Multiple-point statistical simulation of the ore boundaries for a lateritic
bauxite deposit, Stoch. Env. Res. Risk A., 33,
865–878, 2019. a
Dall'Alba, V., Renard, P., Straubhaar, J., Issautier, B., Duvail, C., and Caballero, Y.: 3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer using DeeSse, Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, 2020. a
de Carvalho, P. R. M., da Costa, J. F. C. L., Rasera, L. G., and Varella, L.
E. S.: Geostatistical facies simulation with geometric patterns of a
petroleum reservoir, Stoch. Env. Res. Risk A.,
31, 1805–1822, https://doi.org/10.1007/s00477-016-1243-5, 2016. a
Eisen, O., Nixdorf, U., Wilhelms, F., and Miller, H.: Electromagnetic wave
speed in polar ice: validation of the common-midpoint technique with
high-resolution dielectric-profiling and γ-density measurements,
Ann. Glaciol., 34, 150–156, https://doi.org/10.3189/172756402781817509, 2002. a
Endres, A. L., Murray, T., Booth, A. D., and West, L. J.: A new framework for
estimating englacial water content and pore geometry using combined radar and
seismic wave velocities, Geophys. Res. Lett., 36, 89–98,
https://doi.org/10.1029/2008gl036876, 2009. a
Flowers, G. E. and Clarke, G. K. C.: Surface and bed topography of Trapridge
Glacier, Yukon Territory, Canada: digital elevation models and derived
hydraulic geometry, J. Glaciol., 45, 165–174,
https://doi.org/10.3189/s0022143000003142, 1999. a
Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., and Stoffel, M.: Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods, The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, 2014. a
Gabbi, J., Farinotti, D., Bauder, A., and Maurer, H.: Ice volume distribution and implications on runoff projections in a glacierized catchment, Hydrol. Earth Syst. Sci., 16, 4543–4556, https://doi.org/10.5194/hess-16-4543-2012, 2012. a
Gantayat, P., Kulkarni, A. V., and Srinivasan, J.: Estimation of ice thickness
using surface velocities and slope: case study at Gangotri Glacier, India,
J. Glaciol., 60, 277–282, https://doi.org/10.3189/2014jog13j078, 2014. a
Gerlitz, K., Knoll, M. D., Cross, G. M., Luzitano, R. D., and Knight, R.: Processing Ground Penetrating Radar Data to Improve Resolution of Near-Surface Targets, Symposium on the Application of Geophysics to Engineering and Environmental Problems 1993, 561–574, https://doi.org/10.4133/1.2922036, 2008. a
GLAMOS-Glacier Monitoring Switzerland: Swiss Glacier Mass Balance (release
2019), https://doi.org/10.18750/MASSBALANCE.2019.R2019, 2019. a
Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic forecasts,
calibration and sharpness, J. Roy. Stat. Soc.-B, 69, 243–268, 2007. a
Grab, M., Mattea, E., Bauder, A., Huss, M., Rabenstein, L., Hodel, E.,
Linsbauer, A., Langhammer, L., Schmid, L., Church, G., Hellmann, S.,
Délèze, K., Schaer, P., Lathion, P., Farinotti, D., and Maurer,
H.: Ice thickness distribution of all Swiss glaciers based on extended
ground-penetrating radar data and glaciological modeling, J.
Glaciol., 67, 1–19, https://doi.org/10.1017/jog.2021.55, 2021. a
Gremaud, V.: Géologie du karst de Tsanfleuron, Collection EDYTEM,
Cahiers de Géographie, 7, 127–134, https://doi.org/10.3406/edyte.2008.1062,
2008. a
Haeberli, W., Hoelzle, M., Paul, F., and Zemp, M.: Integrated monitoring of
mountain glaciers as key indicators of global climate change: the European
Alps, Ann. Glaciol., 46, 150–160, https://doi.org/10.3189/172756407782871512,
2007. a
Haugerud, R. A., Harding, D. J., Johnson, S. Y., Harless, J. L., Weaver, C. S.,
and Sherrod, B. L.: High-Resolution Lidar Topography of the Puget Lowland,
Washington – A Bonanza for Earth Science, GSA Today, 13, 4–10,
https://doi.org/10.1130/1052-5173(2003)13<0004:hltotp>2.0.co;2, 2003. a
Hubbard, B. P., Hubbard, A., Mader, H. M., Tison, J.-L., Grust, K., and Nienow,
P. W.: Spatial variability in the water content and rheology of temperate
glaciers: Glacier de Tsanfleuron, Switzerland, Ann. Glaciol., 37,
1–6, https://doi.org/10.3189/172756403781815474, 2003. a
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013. a
Huss, M. and Fischer, M.: Sensitivity of Very Small Glaciers in the Swiss Alps
to Future Climate Change, Front. Earth Sci., 4, 34–51,
https://doi.org/10.3389/feart.2016.00034, 2016. a
Jäggli, C., Straubhaar, J., and Renard, P.: Parallelized adaptive
importance sampling for solving inverse problems, Front. Earth Sci.,
6, 203, https://doi.org/10.3389/feart.2018.00203, 2018. a
Journel, A. and Zhang, T.: The necessity of a multiple-point prior model,
Math. Geol., 38, 591–610, 2006. a
Journel, A. G. and Deutsch, C. V.: Entropy and spatial disorder, Math.
Geol., 25, 329–355, https://doi.org/10.1007/bf00901422, 1993. a
Juda, P., Renard, P., and Straubhaar, J.: A framework for the cross-validation
of categorical geostatistical simulations, Earth Space Science, 7,
e2020EA001152, https://doi.org/10.1029/2020EA001152, 2020. a
MacKay, D. J. C.: Information theory, inference, and learning algorithms,
Cambridge University Press, Cambridge, 6th printing edn., 2007. a
MacKie, E. J. and Schroeder, D. M.: Geostatistically Simulating Subglacial Topography with Synthetic Training Data, in: IGARSS 2020 – 2020 IEEE International Geoscience and Remote Sensing Symposium, 1, 2991–2994, IEEE, https://doi.org/10.1109/igarss39084.2020.9324563, 2020. a
MacKie, E. J., Schroeder, D. M., Caers, J., Siegfried, M. R., and Scheidt, C.:
Antarctic Topographic Realizations and Geostatistical Modeling Used to Map
Subglacial Lakes, J. Geophys. Res.-Earth, 125, 127–149,
https://doi.org/10.1029/2019jf005420, 2020a. a, b
MacKie, E. J., Schroeder, D. M., Zuo, C., Yin, Z., and Caers, J.: Stochastic
modeling of subglacial topography exposes uncertainty in water routing at
Jakobshavn Glacier, J. Glaciol., 67, 75–83,
https://doi.org/10.1017/jog.2020.84, 2020b. a, b
Mariethoz, G., Renard, P., and Straubhaar, J.: The Direct Sampling method to
perform multiple-point geostatistical simulations, Water Resour. Res.,
46, 154–168, https://doi.org/10.1029/2008wr007621, 2010. a, b, c
Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M.,
and Renard, P.: A practical guide to performing multiple-point statistical
simulations with the Direct Sampling algorithm, Comp. Geosci., 52,
307–324, 2013. a
Moorman, B. J. and Michel, F. A.: Glacial hydrological system characterization
using ground-penetrating radar, Hydrol. Process., 14, 2645–2667,
https://doi.org/10.1002/1099-1085(20001030)14:15<2645::aid-hyp84>3.0.co;2-2, 2000. a
Nath Sovik, K. and Huss, M.: Glaciological investigations on three glaciers at
Les Diablerets, Alpes Vaudoises, in: Abstract Volume, 8th Swiss Geoscience
Meeting. Symposium 10. Open Cryosphere Session, 243–244, Platform
Geosciences, Swiss Academy Swiss Geoscience Meeting 2010 of Science, SCNAT,
University of Fribourg, Switzerland, 2010. a
Neven, A.: randlab/tsanfleuron_glacier_data: V1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.5675737, 2021. a
Oriani, F., Straubhaar, J., Renard, P., and Mariethoz, G.: Simulation of rainfall time series from different climatic regions using the direct sampling technique, Hydrol. Earth Syst. Sci., 18, 3015–3031, https://doi.org/10.5194/hess-18-3015-2014, 2014. a
Plewes, L. A. and Hubbard, B.: A review of the use of radio-echo sounding in
glaciology, Prog. Phys. Geogr., 25,
203–236, https://doi.org/10.1177/030913330102500203, 2001. a
Remy, N., Boucher, A., and Wu, J.: Applied geostatistics with SGeMS: a user's
guide, Cambridge University Press, Cambridge, UK, New York, oCLC:
ocn231580897, 2009. a
Schannwell, C., Murray, T., Kulessa, B., Gusmeroli, A., Saintenoy, A., and
Jansson, P.: An automatic approach to delineate the
cold–temperate transition surface with ground-penetrating radar
on polythermal glaciers, Ann. Glaciol., 55, 89–96,
https://doi.org/10.3189/2014aog67a102, 2014. a
Schoeneich, P. and Reynard, E.: Structural Landscapes and Relative Landforms of
the Diablerets Massif, in: Landscapes and Landforms of Switzerland, edited by
Reynard, E., World Geomorphological Landscapes, 123–141, Springer,
https://doi.org/10.1007/978-3-030-43203-4_9, 2021. a
Straubhaar, J. and Renard, P.: Conditioning Multiple-Point Statistics
Simulation to Inequality Data, Earth Space Science, 34, e2020EA001515,
https://doi.org/10.1029/2020EA001515, 2021. a
Straubhaar, J., Renard, P., and Chugunova, T.: Multiple-point statistics using
multi-resolution images, Stoch. Env. Res. Risk
A., 34, 251–273, https://doi.org/10.1007/s00477-020-01770-8, 2020. a, b, c
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.: On the extraction of
channel networks from digital elevation data, Hydrol. Process., 5,
81–100, 1991. a
Vanlooy, J. A., Miège, C., Vandeberg, G. S., and Forster, R. R.: Ice
volume estimation inferred from ice thickness and surface measurements for
Continental Glacier, Wind River Range, Wyoming, USA, J. Glaciol.,
60, 478–488, https://doi.org/10.3189/2014jog13j162, 2014. a
Short summary
We present and compare different geostatistical methods for underglacial bedrock interpolation. Variogram-based interpolations are compared with a multipoint statistics approach on both test cases and real glaciers. Using the modeled bedrock, the ice volume for the Scex Rouge and Tsanfleuron glaciers (Swiss Alps) was estimated to be 113.9 ± 1.6 million cubic meters. Complex karstic geomorphological features are reproduced and can be used to improve the precision of underglacial flow estimation.
We present and compare different geostatistical methods for underglacial bedrock interpolation....