Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-4047-2021
https://doi.org/10.5194/tc-15-4047-2021
Research article
 | 
24 Aug 2021
Research article |  | 24 Aug 2021

An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice

Sönke Maus, Martin Schneebeli, and Andreas Wiegmann

Related authors

Arctic Surface Snow Interactions with the Atmosphere: Spatio-Temporal Isotopic Variability During the MOSAiC Expedition
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719,https://doi.org/10.5194/egusphere-2024-719, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2926,https://doi.org/10.5194/egusphere-2023-2926, 2024
Short summary
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023,https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023,https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023,https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Jari Haapala, and Arttu Polojärvi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-97,https://doi.org/10.5194/tc-2023-97, 2023
Revised manuscript accepted for TC
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary

Cited articles

Ambegaokar, V., Halperin, B., and Langer, J. S.: Hopping Conductivity in Disordered Systems, Phys. Rev. B, 4, 2612–2620, https://doi.org/10.1103/PhysRevB.4.2612, 1971. a
Anderson, D. L. and Weeks, W. F.: A theoretical study of sea ice strength, T. Am. Geophys. Un., 39, 632–640, 1958. a, b
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014. a, b
Beckmann, F., Grupp, R., Haibel, A., Huppmann, M., Nöthe, M., Pyzalla, A., Reimers, W., Schreyer, A., and Zettler, R.: In-situ synchrotron x-ray microtomography studies of microstructure and damage evolution in engineering materials, Adv. Eng. Mater., 9, 939–950, https://doi.org/10.1002/adem.200700254, 2007. a
Broadbent, S. R. and Hammersley, J. M.: Percolation processes, Math. Proc. Cambridge, 53, 629–641, https://doi.org/10.1017/S0305004100032680, 1957. a
Download
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.