Articles | Volume 15, issue 8
The Cryosphere, 15, 3949–3973, 2021
https://doi.org/10.5194/tc-15-3949-2021
The Cryosphere, 15, 3949–3973, 2021
https://doi.org/10.5194/tc-15-3949-2021

Research article 20 Aug 2021

Research article | 20 Aug 2021

Evaluating a prediction system for snow management

Pirmin Philipp Ebner et al.

Related authors

Liquid-water content and water distribution of wet snow using electrical monitoring
Pirmin Philipp Ebner, Aaron Coulin, Joël Borner, Fabian Wolfsperger, Michael Hohl, and Martin Schneebeli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-56,https://doi.org/10.5194/tc-2020-56, 2020
Revised manuscript not accepted
Short summary
Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample
Pirmin Philipp Ebner, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 10, 791–797, https://doi.org/10.5194/tc-10-791-2016,https://doi.org/10.5194/tc-10-791-2016, 2016
Short summary
Tomography-based monitoring of isothermal snow metamorphism under advective conditions
P. P. Ebner, M. Schneebeli, and A. Steinfeld
The Cryosphere, 9, 1363–1371, https://doi.org/10.5194/tc-9-1363-2015,https://doi.org/10.5194/tc-9-1363-2015, 2015
Short summary
An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow
P. P. Ebner, S. A. Grimm, M. Schneebeli, and A. Steinfeld
Geosci. Instrum. Method. Data Syst., 3, 179–185, https://doi.org/10.5194/gi-3-179-2014,https://doi.org/10.5194/gi-3-179-2014, 2014

Related subject area

Discipline: Snow | Subject: Field Studies
Implications of surface flooding on airborne estimates of snow depth on sea ice
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021,https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
A low-cost method for monitoring snow characteristics at remote field sites
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021,https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020,https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan
Satoru Yamaguchi, Masaaki Ishizaka, Hiroki Motoyoshi, Sent Nakai, Vincent Vionnet, Teruo Aoki, Katsuya Yamashita, Akihiro Hashimoto, and Akihiro Hachikubo
The Cryosphere, 13, 2713–2732, https://doi.org/10.5194/tc-13-2713-2019,https://doi.org/10.5194/tc-13-2713-2019, 2019
Short summary
The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019,https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary

Cited articles

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning, Cold Reg. Sci. Technol., 35, 3135–3151, 2002. a
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. a
Dumont, M., Gardelle, J., Sirguey, P., Guillot, A., Six, D., Rabatel, A., and Arnaud, Y.: Linking glacier annual mass balance and glacier albedo retrieved from MODIS data, The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, 2012. a
Ebner, P. P., Koch, F., Premier, V., Marin, C., Hanzer, F., Carmagnola, C. M., François, H., Günther, D., Monti, F., Hargoaa, O., Strasser, U., Morin, S., and Lehning, M.: Datasets for the publication “Evaluating a prediction system for snow management”, Zenodo, https://doi.org/10.5281/zenodo.4541353, 2021. a
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Snow cover duration trends observed at sites and predicted by multiple models, The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, 2020. a
Download
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.