Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3949-2021
https://doi.org/10.5194/tc-15-3949-2021
Research article
 | 
20 Aug 2021
Research article |  | 20 Aug 2021

Evaluating a prediction system for snow management

Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning

Related authors

Air temperature partitioning of snow accumulation, erosion and melt: a regime shift occurring on Mt. Ortles (Eastern Italian Alps)
Tiziana Lazzarina Zendrini, Luca Carturan, Michael Lehning, Mathias Bavay, Federico Cazorzi, Paolo Gabrielli, Nander Wever, and Giancarlo Dalla Fontana
EGUsphere, https://doi.org/10.5194/egusphere-2025-5186,https://doi.org/10.5194/egusphere-2025-5186, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Assessment of snow model uncertainty in relation to the effect of a 1 °C warming using the snow modelling framework openAMUNDSEN
Erwin Rottler, Brage Storebakken, Michael Warscher, Florian Hanzer, Elena Bertazza, and Ulrich Strasser
EGUsphere, https://doi.org/10.5194/egusphere-2025-3707,https://doi.org/10.5194/egusphere-2025-3707, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Assessment of thermal stabilization measures based on numerical simulations at a Swiss alpine permafrost site
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
The Cryosphere, 19, 4277–4301, https://doi.org/10.5194/tc-19-4277-2025,https://doi.org/10.5194/tc-19-4277-2025, 2025
Short summary
Simulating the effect of natural convection in a tundra snow cover
Mahdi Jafari and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-3035,https://doi.org/10.5194/egusphere-2025-3035, 2025
Short summary
Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025,https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary

Cited articles

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning, Cold Reg. Sci. Technol., 35, 3135–3151, 2002. a
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. a
Dumont, M., Gardelle, J., Sirguey, P., Guillot, A., Six, D., Rabatel, A., and Arnaud, Y.: Linking glacier annual mass balance and glacier albedo retrieved from MODIS data, The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, 2012. a
Ebner, P. P., Koch, F., Premier, V., Marin, C., Hanzer, F., Carmagnola, C. M., François, H., Günther, D., Monti, F., Hargoaa, O., Strasser, U., Morin, S., and Lehning, M.: Datasets for the publication “Evaluating a prediction system for snow management”, Zenodo, https://doi.org/10.5281/zenodo.4541353, 2021. a
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Snow cover duration trends observed at sites and predicted by multiple models, The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, 2020. a
Download
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Share