Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3949-2021
https://doi.org/10.5194/tc-15-3949-2021
Research article
 | 
20 Aug 2021
Research article |  | 20 Aug 2021

Evaluating a prediction system for snow management

Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning

Related authors

Influence of snowpack properties and local incidence angle on SAR signal depolarization: a mathematical model for high-resolution snow depth estimation
Alberto Mariani, Jacopo Borsotti, Franz Livio, Giacomo Villa, Martin Metzger, and Fabiano Monti
The Cryosphere, 20, 963–980, https://doi.org/10.5194/tc-20-963-2026,https://doi.org/10.5194/tc-20-963-2026, 2026
Short summary
Undercatch corrected gridded precipitation data to improve hydrological modeling in high-alpine orography
Philipp Maier, Caroline Ehrendorfer, Sophie Lücking, Thomas Pulka, Fabian Lehner, Mathew Herrnegger, Herbert Formayer, and Franziska Koch
EGUsphere, https://doi.org/10.5194/egusphere-2025-6382,https://doi.org/10.5194/egusphere-2025-6382, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Combining geodetic data and summer MODIS albedo anomalies for annual glacier mass balance estimation
Mattia Callegari, Carlo Marin, Claudia Notarnicola, and Thomas Schellenberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-5779,https://doi.org/10.5194/egusphere-2025-5779, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Evaluation of annual maximum snow depth data estimation from the European-wide reanalysis C3S MTMSI (Copernicus Climate Change Service – Mountain Tourism Meteorological and Snow Indicators) against in-situ observations
Elisa Kamir, Samuel Morin, Guillaume Evin, Penelope Gehring, Bodo Wichura, and Ali Nadir Arslan
Earth Syst. Sci. Data, 18, 17–32, https://doi.org/10.5194/essd-18-17-2026,https://doi.org/10.5194/essd-18-17-2026, 2026
Short summary
A Novel Analytical Tool to Capture Wind Profile Variability for Wind Energy Assessment: Fast, Simple, and Beyond State-of-the-Art in Complex Terrain
Brandon Jacobus Adrianus van Schaik, Alice Juliette Baruzier, Clément Loyer, Hendrik Huwald, and Michael Lehning
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-271,https://doi.org/10.5194/wes-2025-271, 2025
Preprint under review for WES
Short summary

Cited articles

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning, Cold Reg. Sci. Technol., 35, 3135–3151, 2002. a
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. a
Dumont, M., Gardelle, J., Sirguey, P., Guillot, A., Six, D., Rabatel, A., and Arnaud, Y.: Linking glacier annual mass balance and glacier albedo retrieved from MODIS data, The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, 2012. a
Ebner, P. P., Koch, F., Premier, V., Marin, C., Hanzer, F., Carmagnola, C. M., François, H., Günther, D., Monti, F., Hargoaa, O., Strasser, U., Morin, S., and Lehning, M.: Datasets for the publication “Evaluating a prediction system for snow management”, Zenodo, https://doi.org/10.5281/zenodo.4541353, 2021. a
Essery, R., Kim, H., Wang, L., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Decharme, B., Dutra, E., Fang, X., Gusev, Y., Hagemann, S., Haverd, V., Kontu, A., Krinner, G., Lafaysse, M., Lejeune, Y., Marke, T., Marks, D., Marty, C., Menard, C. B., Nasonova, O., Nitta, T., Pomeroy, J., Schädler, G., Semenov, V., Smirnova, T., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Snow cover duration trends observed at sites and predicted by multiple models, The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, 2020. a
Download
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Share