Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-389-2021
https://doi.org/10.5194/tc-15-389-2021
Research article
 | Highlight paper
 | 
28 Jan 2021
Research article | Highlight paper |  | 28 Jan 2021

Macroscopic water vapor diffusion is not enhanced in snow

Kévin Fourteau, Florent Domine, and Pascal Hagenmuller

Related authors

A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024,https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023,https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Southern Hemisphere atmospheric history of carbon monoxide over the late Holocene reconstructed from multiple Antarctic ice archives
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023,https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores - results from the EastGRIP region
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
EGUsphere, https://doi.org/10.5194/egusphere-2023-1904,https://doi.org/10.5194/egusphere-2023-1904, 2023
Short summary
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Anna Braun, Kévin Fourteau, and Henning Löwe
EGUsphere, https://doi.org/10.5194/egusphere-2023-1947,https://doi.org/10.5194/egusphere-2023-1947, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Seismic attenuation in Antarctic firn
Stefano Picotti, José M. Carcione, and Mauro Pavan
The Cryosphere, 18, 169–186, https://doi.org/10.5194/tc-18-169-2024,https://doi.org/10.5194/tc-18-169-2024, 2024
Short summary
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023,https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
Anna Braun, Kévin Fourteau, and Henning Löwe
EGUsphere, https://doi.org/10.5194/egusphere-2023-1947,https://doi.org/10.5194/egusphere-2023-1947, 2023
Short summary
Heterogeneous grain growth and vertical mass transfer within a snow layer under a temperature gradient
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 17, 3553–3573, https://doi.org/10.5194/tc-17-3553-2023,https://doi.org/10.5194/tc-17-3553-2023, 2023
Short summary
Impact of the sampling procedure on the specific surface area of snow measurements with the IceCube
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023,https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary

Cited articles

Auriault, J.: Heterogeneous medium. Is an equivalent macroscopic description possible?, Int. J. Engin. Sci., 29, 785–795, https://doi.org/10.1016/0020-7225(91)90001-J, 1991. a
Auriault, J.-L., Boutin, C., and Geindreau, C.: Homogenization of coupled phenomena in heterogenous media, John Wiley & Sons, Hoboken, New Jersey, USA, 2010. a, b, c, d, e
Beckmann, W. and Lacmann, R.: Interface kinetics of the growth and evaporation of ice single crystals from the vapour phase: II. Measurements in a pure water vapour environment, J. Cryst. Growth, 58, 433–442, https://doi.org/10.1016/0022-0248(82)90292-5, 1982. a
Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S. R., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011. a
Calonne, N., Geindreau, C., and Flin, F.: Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization, J. Phys. Chem. B, 118, 13393–13403, https://doi.org/10.1021/jp5052535, 2014. a, b, c, d, e, f, g, h, i, j, k
Short summary
There has been a long controversy to determine whether the effective diffusion coefficient of water vapor in snow is superior to that in free air. Using theory and numerical modeling, we show that while water vapor diffuses more than inert gases thanks to its interaction with the ice, the effective diffusion coefficient of water vapor in snow remains inferior to that in free air. This suggests that other transport mechanisms are responsible for the large vapor fluxes observed in some snowpacks.