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Abstract. Water vapor transport in dry snowpacks plays a
significant role for snow metamorphism and the mass and en-
ergy balance of snowpacks. The molecular diffusion of water
vapor in the interstitial pores is usually considered to be the
main or only transport mechanism, and current detailed snow
physics models therefore rely on the knowledge of the effec-
tive diffusion coefficient of water vapor in snow. Numerous
previous studies have concluded that water vapor diffusion
in snow is enhanced relative to that in air. Various field ob-
servations also indicate that for vapor transport in snow to
be explained by diffusion alone, the effective diffusion coef-
ficient should be larger than that in air. Here we show using
theory and numerical simulations of idealized and measured
snow microstructures that, although sublimation and deposi-
tion of water vapor onto snow crystal surfaces do enhance
microscopic diffusion in the pore space, this effect is more
than countered by the restriction of diffusion space due to
ice. The interaction of water vapor with the ice results in wa-
ter vapor diffusing more than inert molecules in snow but
still less than in free air, regardless of the value of the stick-
ing coefficient of water molecules on ice. Our results imply
that processes other than diffusion play a predominant role in
water vapor transport in dry snowpacks.

1 Introduction

When a snowpack is submitted to a temperature gradient,
macroscopic water vapor transfer occurs from the warmer
to the colder parts of the snowpack in a process sometimes
referred to as layer-to-layer vapor flux. This redistribution of

mass plays a significant role in the evolution of the snowpack
and its physical properties. In the absence of air convection
in the snowpack, this macroscopic vapor flux results from
the microscopic vapor diffusion occurring in the interstitial
pores of snow and is impacted by water sublimation and de-
position processes acting as sources and sinks of vapor at the
ice–pore interface (Yosida et al., 1955; Colbeck, 1983). The
physics at play in the pores is generally agreed upon, even
though questions about the precise kinetics of the sublima-
tion and deposition of water molecules onto ice surfaces in
snow remain open (Legagneux and Domine, 2005; Pinzer
et al., 2012; Calonne et al., 2014; Krol and Löwe, 2016).
However, even for investigators assuming the same physics
at the microscopic scale, the transition from the microscopic
to the macroscopic scale remains a point of contention in the
snow community (Giddings and LaChapelle, 1962; Colbeck,
1993; Pinzer et al., 2012; Hansen and Foslien, 2015; Shertzer
and Adams, 2018; Hansen, 2019). Yet, a proper understand-
ing of vapor transport in snow at the macroscopic scale is a
prerequisite for accurate snowpack physical modeling.

There has notably been a long-standing controversy con-
cerning the magnitude of the macroscopic diffusive fluxes
transporting mass from one layer to another and in partic-
ular to determine whether they are larger than what would
be observed in free air under similar macroscopic vapor gra-
dients. The seminal study of Yosida et al. (1955) set out to
measure in the laboratory the macroscopic vapor flux in a
pile of snow subjected to a thermal gradient. Their results
indicated that contrary to first expectations, the vapor flux
was about 3 to 4 times larger than in free air. To explain
this enhanced diffusion, Yosida et al. (1955) introduced the
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“hand-to-hand” delivery mechanism, which notably consid-
ers that the deposition of water molecules on one side of an
ice grain and the sublimation on another side act as a short-
cut in the vapor trajectory. Several subsequent experimental
studies have either confirmed (e.g., Sommerfeld et al., 1987)
or contradicted (Sokratov and Maeno, 2000) the findings of
Yosida et al. (1955) that macroscopic vapor diffusion is sig-
nificantly larger in snowpacks than in free air. Similarly, sev-
eral analytical and numerical modeling works have either
accepted (Colbeck, 1993; Christon et al., 1994; Gavriliev,
2008; Hansen and Foslien, 2015) or contradicted (Giddings
and LaChapelle, 1962; Calonne et al., 2014; Shertzer and
Adams, 2018) the results of Yosida et al. (1955) and the
hand-to-hand mechanism. As mentioned by Sokratov and
Maeno (2000) and Pinzer et al. (2012), the experimental dis-
crepancies can be explained by the difficulty to accurately
measure macroscopic vapor fluxes and vapor concentration
gradients in snow, either in the field or in the laboratory.
Yet, the large disagreement between the various analytical
and modeling works, which sometimes differ more than 10-
fold (e.g., Colbeck, 1993; Calonne et al., 2014), cannot be
explained by experimental errors.

The aim of this paper is to clarify the origin of these dis-
crepancies and to quantify the macroscopic vapor flux based
on theoretical and numerical modeling. As the kinetics of
sublimation and deposition of water molecules on the ice sur-
faces in snow is not well constrained, we decided to explore a
broad range of possible kinetics in our study. We start by con-
sidering in Sect. 2 whether the hand-to-hand mechanism, as
originally proposed by Yosida et al. (1955), can indeed ex-
plain the large macroscopic vapor fluxes observed in snow.
Then in Sect. 3, we recall how the macroscopic vapor flux
can be obtained from the microscopic vapor flux occurring
at the pore scale. In Sect. 4 we present theoretical work to
bound the macroscopic vapor flux in snow by treating two
limiting cases of surface kinetics. Finally, numerical simula-
tions are presented in Sect. 5 in order to illustrate the points
raised throughout the article and to provide some numerical
values of the effective diffusion coefficient.

2 Does the hand-to-hand mechanism enhance
macroscopic vapor diffusion?

As previously mentioned, the experiment of Yosida et al.
(1955) marks the introduction of the idea of enhanced vapor
diffusion due to the hand-to-hand delivery mechanism. Their
experimental setup consisted of four stacked cans (3.5 cm in
height and 5.5 cm in diameter each) filled with snow and sep-
arated with wire meshes that held the snow in place in each
can without preventing vapor diffusion between them. A tem-
perature difference was imposed between the top and bottom
of the stack in order to create a vertical thermal gradient of
about 45 Km−1 and thus induce a macroscopic vapor flux.
The experiments were carried out with average temperatures

of about −4 ◦C and lasted about 5 h. The cans filled with
snow were weighed before and after the experiment in order
to determine their mass gain or loss, which can be used to
estimate the magnitude of the macroscopic vapor flux trans-
porting mass from one can to another. Based on these mea-
surements and assuming that vapor was at saturation con-
centration, Yosida et al. (1955) concluded that the macro-
scopic vapor flux was about 3 to 4 times greater than what
would be expected in free air for a similar concentration gra-
dient. Noting that this result appears to contradict the idea
that the presence of ice would impede the diffusion of va-
por in snow, Yosida et al. (1955) proposed the hand-to-hand
delivery mechanism as an explanation for this contradiction.
This mechanism first states that because of its low thermal
conductivity, the pore space of snow tends to concentrate the
thermal gradient, leading to a concentrated vapor gradient in
the pores. Moreover, Yosida et al. (1955) proposed that “Wa-
ter vapor needs not force its way through the interspaces be-
tween the ice grains composing snow. It needs only condense
on one side of an ice grain and evaporate from the other side
to condense again on the side facing to it of the next grain.
In this way the distance which the water vapor actually tra-
verses by diffusion turns out to be a fraction of the distance of
its displacement. Such a situation makes the diffusion of wa-
ter vapor through snow easier than through open air, which
causes D [the effective diffusion coefficient in snow] to ap-
pear greater than D0 [the diffusion coefficient in free air]”.
One should note that this explanation entails more than the
simple continuous sublimation of vapor from some interfaces
and subsequent deposition on others. Yosida et al. (1955) ar-
gued that this is equivalent to a situation in which a molecule
depositing on one side of an ice grain reappears as a subli-
mating molecule on another side.

Our understanding however is that the second part of the
mechanism proposed by Yosida et al. (1955) is not physically
sound and that the continuous deposition and sublimation of
molecules cannot be used to explain their experimental re-
sults. A schematic illustration of the experiment is given in
Fig. 1, with only two cans for simplicity. The hand-to-hand
delivery of water molecules is represented by the orange
and red dots, depositing on the lower side and sublimating
on the upper side of the ice grain at the interface between
the two cans. For this mechanism to explain the experimen-
tal observations, the continuous deposition and sublimation
should produce a real mass flux from one can to the other,
as if the depositing molecule reappeared as the sublimating
one. However, what actually happens is that the depositing
molecule (represented as an orange dot in Fig. 1) remains
incorporated at the bottom of the ice grain, thus remaining
in the first can. Similarly, the sublimating molecule (repre-
sented as a red dot in Fig. 1) was already present in the sec-
ond can. The synchronous sublimation and deposition there-
fore do not lead to a mass transfer between the two cans.
This is different from the molecules traversing the boundary
in the air space (represented as green dots in Fig. 1) that actu-
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ally lead to a mass transfer by depleting the first can in favor
of the second one. We therefore argue that the hand-to-hand
mechanism, as proposed by Yosida et al. (1955), is not phys-
ically sound.

If one adopts the hand-to-hand mechanism, such as
Hansen (2019) for instance, the idea of water vapor shortcut-
ting the ice may appear supported by the indistinguishabil-
ity of water molecules. For an observer focused on the pore
space, the argument says it really appears as if the water va-
por is transported almost instantaneously through the ice as
a disappearing water molecule depositing on one side of an
ice grain is almost instantaneously replaced by an appearing
molecule sublimating on the other side. However, this point
of view neglects the fact that the mass leaving a control vol-
ume also depends on the gain or loss of the ice during the
deposition and sublimation process. As exemplified in the
right panel of Fig. 1, for an observer focused on the ice ev-
erything appears as if the ice disappearing on the sublimation
side reappeared on the depositing side (see for instance the
videos in the supplements of Pinzer et al., 2012; Hagenmuller
et al., 2019). Because of mass conservation during the sub-
limation and deposition process, the apparent flux of vapor
skipping the ice is compensated by an equal counter-flux of
water molecules in the ice space. Therefore, the mass transfer
from one control volume to another is solely governed by the
diffusion of water molecules in the air (green dots in Fig. 1).

We stress that we do not disagree with the insightful
propositions of Yosida et al. (1955) (i) that the vapor flux
tends to travel from one ice grain to another and not to go
around them and (ii) that the thermal gradient is enhanced in
the pore space compared to the macroscopic gradient. The
point of contention is that the continuous sublimation and
deposition of water molecules do not count as a contribu-
tion to the mass flux. This problem with the hand-to-hand
mechanism has been previously addressed by Giddings and
LaChapelle (1962), when they noted that “The hand-to-hand
transfer does not contribute to the flux because this transfer
does not shift water molecules across a plane fixed in the
solid network”.

The problem at hand is now to quantify the impact of the
enhanced thermal gradient in the air space on the macro-
scopic diffusion of vapor and to determine whether it can
account for the large macroscopic vapor fluxes reported in
the literature (e.g., Yosida et al., 1955; Sommerfeld et al.,
1987) and in particular if the macroscopic diffusion fluxes in
snow are larger than the fluxes in free air.

3 Defining the macroscopic vapor flux and the effective
diffusion coefficient

Let us consider a volume of snow (Fig. 2a) subjected to
vertical macroscopic temperature and vapor gradients at its
boundaries. For this study we consider that the macroscopic
water vapor gradient equals the macroscopic gradient of sat-

Figure 1. Illustration of the experiment of Yosida et al. (1955) (not
to scale), with the ice space represented in blue and the bound-
ary between two cans represented as a dashed line. The green dots
represent water molecule diffusing through the boundary between
two cans. The orange and red dots are depositing and sublimating
molecules, which are at the origin of the hand-to-hand mechanism
as proposed by Yosida et al. (1955). The evolution of the system
over a time period 1t is depicted in the right panel. The black ar-
rows indicate the movement of the ice phase, opposite to that of
water molecules in the air space.

urated vapor and is therefore driven by the macroscopic tem-
perature gradient (as in Yosida et al., 1955; Colbeck, 1993;
Sokratov and Maeno, 2000; Pinzer et al., 2012). A necessary
condition to be able to treat this snow sample as an equiv-
alent macroscopic medium is the condition of separation of
scales (Auriault, 1991; Auriault et al., 2010). This separation
of scale can be expressed as

Lmicro� Lmacro, (1)

where Lmicro is the length scale characterizing the size of
the representative elementary volume (REV) (Auriault et al.,
2010; Calonne et al., 2014) of the microstructure, and Lmacro
is the length scale characterizing variations in the snowpack
or of the external forcing applied at the macroscopic scale,
for instance the change between different snow layers or
changes in thermal and vapor gradients (Fig. 2b). In this
study we consider snow samples with a size of at least Lmicro
but less than Lmacro. In this case, the snow sample is large
enough to be treated as an equivalent macroscopic body but
not so large that it spans several snow layers and can thus be
considered to be macroscopically homogeneous. The relation
between the various length scales is exemplified in Fig. 2.

At the microscopic scale, vapor diffuses in response to
vapor concentration gradients in the pore space. The result-
ing microscopic vapor fluxes f are governed by Fick’s law:
f =−D0∇c, with D0 being the diffusion coefficient of va-
por in air and ∇c the gradient of vapor concentration in the
pore. These microscopic fluxes may result in a net transport
of mass at the macroscopic scale, i.e., a macroscopic flux.
The magnitude of this macroscopic flux F corresponds to
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Figure 2. Relationship between the microscopic and macroscopic points of view of a snow sample. (a) Microscopic point of view with the
ice in blue and microscopic vapor flux in orange. (b) Macroscopic point of view where the snowpack is seen as a layered continuum.

the mass transported through an orthogonal plane per unit
time and per unit surface of snow. This macroscopic flux is
the quantity that Yosida et al. (1955) set out to measure.

This paper, as previous works in the scientific literature,
determines the macroscopic flux from the first principles of
physics at the pore scale. It is therefore necessary to deter-
mine how the macroscopic flux F at the macroscopic scale
can be obtained from the microscopic fluxes f in the pores.
One might attempt to compute F as the quantity of matter
transported through an arbitrary plane of the microstructure.
In this case, F would be given as the surface average of the
pore-scale flux f , with the averaging performed over the en-
tire plane, ice included (the vapor flux being 0 in the ice).
Yet, this method of computing the macroscopic vapor flux
can be problematic. As pointed out by Pinzer et al. (2012)
the water vapor fluxes through different horizontal planes
of a microstructure are not necessarily all equal. Thus, de-
pending on the plane chosen, the same snow sample could
be assigned different macroscopic fluxes contrary to the no-
tion that the snow sample is homogeneous from the macro-
scopic point of view. To avoid this issue, the macroscopic
flux should therefore be computed as the volume-averaged
microscopic vapor flux over the entire representative volume
of the microstructure (Shertzer and Adams, 2018), which is
equivalent to averaging the fluxes through various horizontal
planes (Pinzer et al., 2012). Again, the averaging needs to be
performed over the total volume, including the ice space, and
the macroscopic vapor flux F is thus given by

F =
1
V

∫
Va

f dV, (2)

where V and Va, respectively, represent the total volume of
the snow sample and the pore volume.

We now phenomenologically define the effective diffusion
coefficient for vapor Deff such that F =−Deff∇C, where

∇C is the macroscopic vapor concentration gradient (Col-
beck, 1993; Shertzer and Adams, 2018). Here, the vapor con-
centration is expressed in mass per volume of pore space,
and the averaging is thus performed in the pore only. The
macroscopic vapor gradient is thus given by the difference
in average vapor concentration between two opposing sides
of the snow sample divided by the size of the sample. This
corresponds to the definition implicitly adopted by Yosida
et al. (1955). In the snow science community the effective
diffusion coefficient Deff is usually expected to be indepen-
dent of the applied thermal and vapor gradients (e.g., Yosida
et al., 1955; Colbeck, 1993). In this case, it is possible to
treat the problem of macroscopic vapor transport in snow
with a generalized Fick’s law, where Deff is independent of
the applied boundary conditions and only depends on the
snow microstructure. Such an effective diffusion coefficient
does not depend on the external conditions and is then said
to be intrinsic (Auriault et al., 2010). However, one should
keep in mind that the effective diffusion coefficients com-
puted in this work might depend on the applied vapor and
thermal gradients and are therefore not necessarily intrin-
sic. Moreover the proposed numerical values may also not
apply in the case where the macroscopic concentration gra-
dient is decoupled from the macroscopic thermal gradient.
Finally, we define the normalized effective diffusion coef-
ficient as Dnorm

eff =Deff/D0. Expressing macroscopic water
vapor fluxes in snow under the form of normalized diffusion
coefficients allows us to easily compare them to free air.

Note that the goal of this work is only to quantify the
macroscopic water vapor flux in snow and its associated
phenomenological effective diffusion coefficient. Contrary to
Calonne et al. (2014) we do not attempt to derive the macro-
scopic equations governing water vapor at the layer scale.
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4 Bounding the effective diffusion coefficient of water
vapor in snow

Let us consider a snow sample of volume V subjected to ver-
tical thermal and vapor concentration gradients. For simplic-
ity, we assume the problem to be steady-state. The diffusion
of water vapor at the microscopic scale is governed by the
following system of equations (Calonne et al., 2014):{

div(−D0∇c)= 0 (�a)

−D0∇c ·n= αvkin(c− csat) (0),
(3)

where �a, 0, and n represent the pore space, the ice–pore
interface, and the normal vector to 0 pointing toward the ice.
D0 is the vapor diffusion coefficient in free air, c is the vapor
concentration in the pores, csat is the vapor saturation concen-
tration at the ice interface, vkin =

√
(kT )/(2πm) is related to

the velocity of water molecules in the gas and is referred to
as the kinetic velocity (k being Boltzmann’s constant and m
the mass of a water molecule), and α is the sticking coeffi-
cient of water molecules on the ice surface (sometimes re-
ferred to as the accommodation coefficient) and is less than
or equal to unity. The second equation of the system is the
Hertz–Knudsen equation and governs the mass fluxes that
are incorporated or released from the ice. In the presence of
a large-enough thermal gradient, the dependence of the satu-
ration concentration on the local curvature of the ice surface
can be neglected compared to its dependence on temperature
(Colbeck, 1983). Under this condition, we can expect csat to
become a function of temperature only. Moreover, even if
curvature effects were not negligible at the microscopic level,
it appears unlikely for them to result in a net macroscopic
vapor flux as in a homogeneous snow layer curvature differ-
ences are distributed isotropically within the microstructure
and thus do not result in a net movement of water vapor.

The actual value of the α coefficient is not well known and
in general will depend on the local saturation of water va-
por and on the crystallographic properties of the ice surface
(Saito, 1996; Libbrecht and Rickerby, 2013). Yet, two limit-
ing cases, corresponding to the case of infinitely fast surface
kinetics and inert ice surfaces, can easily be analyzed. As is
empirically verified later, these two cases appear to corre-
spond to the upper and lower bounds of macroscopic vapor
fluxes in snow. Solving Eq. (3) we obtain the microscopic
vapor fluxes inside the whole microstructure. Using Eq. (2)
yields the water vapor flux at the macroscopic scale F .

4.1 The infinitely fast surface kinetics case

In the case where the product αvkin is very large, small over-
saturations (undersaturations) lead to an abrupt adsorption
(desorption) of water molecules, rapidly restoring the satura-
tion value. In the limiting and hypothetical case of infinitely
fast surface kinetics (i.e., αvkin→∞), the vapor concentra-
tion is constantly at saturation at the ice–pore interface, and
the Hertz–Knudsen equation can be replaced by the simpler

equality of the vapor concentration with its saturation value
at the ice surface. While the infinitely fast kinetics case is
strictly theoretical as αvkin is less than or equal to vkin, it
helps apprehending the macroscopic vapor flux when sur-
face kinetics processes are much faster than diffusion in the
air space. Note also that the saturation of water vapor at the
interface does not mean that the deposition and sublimation
fluxes are 0 at the interface.

As explained by Pinzer et al. (2012), the infinitely fast
surface kinetics situation is the case where the microscopic
vapor gradients across the pores are maximal and therefore
where the macroscopic vapor flux is also maximal. A demon-
stration of this fact, using the spatial-averaging theorem, is
given in Appendix A. Note that the assumption of saturated
vapor at the ice surface, and therefore infinitely fast surface
kinetics, has been regularly employed in studies about the
diffusion of vapor in snow (e.g., Colbeck, 1993; Christon
et al., 1994; Pinzer et al., 2012).

Even though this case corresponds to the maximal vapor
flux, it can be shown that the macroscopic diffusion coeffi-
cient remains less than expected in free air, as pointed out by
Giddings and LaChapelle (1962). This is due to the loss of
diffusion space because of the ice, and we propose here to
rederive the Giddings and LaChapelle (1962) demonstration
using a more detailed framework. First, we assume that the
thermal gradient is low enough so that the saturation vapor
concentration dependence on temperature can be considered
to be linear. For a thermal gradient of 100 Km−1 applied to a
1 cm sample, the deviation of vapor concentration from lin-
ear behavior is about 0.1 %, while the deviation of the deriva-
tive with respect to temperature is about 5 %. Moreover, this
condition corresponds to the fact that the macroscopic vapor
gradient should be constant over the sample, i.e., that the size
of the sample is smaller than Lmacro.

Under this assumption one can show that the vapor con-
centration is at saturation within the entire pore space. A
demonstration is presented in Appendix B, and a similar con-
clusion was also reached by Yosida et al. (1955) and Pinzer
et al. (2012). Consequently, the macroscopic vapor flux is
expressed as

F =
1
V

∫
Va

f dV = φ
1
Va

∫
Va

−D0∇csatdV

= φ
1
Va

∫
Va

−D0
dcsat

dT
∇TadV, (4)

where φ is the snow porosity (not to be confused with the
ice volume fraction), Va is the volume of the pore space, ∇Ta
is the microscopic temperature gradient in the air; we have
used the chain rule ∇csat =

dcsat
dT ∇Ta. As we considered that

the saturation concentration of vapor does not deviate from a
linear behavior, dcsat

dT is taken as constant over the volume Va.
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Thus

F =−φD0
dcsat

dT
1
Va

∫
Va

∇TadV. (5)

The precise relationship between the average microscopic
thermal gradient in the air space and the macroscopic gra-
dient ∇T depends on the particular snow microstructure
(Calonne et al., 2011, 2014; Hansen and Foslien, 2015).
However, Hansen and Foslien (2015) report that

∇T = φ
1
Va

∫
Va

∇TadV + (1−φ)
1
Vi

∫
Vi

∇TidV, (6)

where Vi is the volume of the ice space, and ∇Ti is the mi-
croscopic temperature gradient in the ice.

As snow is a transversely isotropic material with the verti-
cal direction being the direction normal to the isotropy plane,
one can expect for reason of symmetry that the average air
and ice thermal gradients are aligned with the vertical macro-
scopic gradient. Moreover, the average air and ice thermal
gradients are oriented in the same direction as the macro-
scopic gradient. Therefore, one has the inequality about the
magnitudes of the air and macroscopic thermal gradients

1
Va
|

∫
Va

∇TadV | ≤
1
φ
|∇T |, (7)

which states that while the average thermal gradient in the air
can be greater than the macroscopic thermal gradient, it can-
not exceed it by a factor greater than 1/φ. Intuitively, it states
that the temperature drop in the pore space cannot exceed the
temperature drop observed over the entire snow sample. One
can show that the air thermal gradient is maximal in the spe-
cial case of a microstructure composed of slabs perpendicu-
lar to the macroscopic temperature gradient. In this case the
temperature gradient is almost entirely concentrated in the
air, and furthermore Eq. (7) becomes an equality when the
thermal conductivity of ice is assumed to be infinite.

Using the inequality of Eq. (7) in Eq. (5) leads to an in-
equality of the magnitude of the macroscopic flux

|F | ≤D0
dcsat

dT
|∇T | =D0|∇C|, (8)

where∇C = dcsat
dT ∇T is the macroscopic vapor concentration

gradient.
The macroscopic vapor flux is thus less than the vapor flux

that would take place in free air, which can be similarly ex-
pressed by Dnorm

eff ≤ 1. While the microscopic vapor flux in
the pores is enhanced due to the enhancement of the micro-
scopic temperature and vapor gradients, this effect is coun-
tered by the reduction in the space where vapor can diffuse.
As the average air temperature gradient at the maximum is
enhanced by a factor 1/φ, while the reduction in pore space

systematically decreases the macroscopic flux by a factor φ,
the resulting macroscopic vapor flux cannot be greater than
in free air. The equalityDnorm

eff = 1 holds when the entire tem-
perature gradient is concentrated in the pore space. However,
since the thermal conductivity of ice is finite, the thermal gra-
dient cannot be solely concentrated in the pore space, and
thus one always has Dnorm

eff < 1.

4.2 The slow-surface-kinetics case

The other limiting case is when the deposition and sublima-
tion of water vapor at the ice grain surfaces is slow enough to
be neglected. The diffusion of water vapor in snow then be-
comes equivalent to the diffusion of a gas in an inert porous
structure. This problem has been extensively studied (e.g.,
Torquato and Haslach, 2002; Auriault et al., 2010), and in
this case the effective diffusion coefficient is given by

Deff = φτD0, (9)

where τ is defined as the tortuosity factor and is linked to
the lengthening of the diffusion streamlines in the porous
network. The tortuosity factor represents an impediment of
diffusion and is thus less than or equal to unity. Moreover, τ
depends solely on the structure of the porous medium and not
on the specific diffusive species or the applied concentration
gradient (Torquato and Haslach, 2002; Auriault et al., 2010).
Under an assumption of slow surface kinetics, Calonne et al.
(2014) report effective diffusion coefficients reduced from
20 % to 85 % compared to the free-air case, with lower diffu-
sion coefficients corresponding to denser snow samples. Al-
though we do not have a rigorous demonstration of this fact,
it appears that the slow-kinetics assumption corresponds to
the case where the macroscopic flux (and henceDeff) is min-
imal for a given vapor concentration gradient. This propo-
sition is empirically verified with numerical simulations in
Sect. 5.

4.3 Comparison with previous works

We establish in Sect. 4.1 that even under the assumption of
fast surface kinetics, the effective vapor diffusion coefficient
in snow cannot be greater than that in free air. Yet several
studies based on analytical and numerical models, which are
not subjected to experimental errors, have reported opposite
results. It thus appears important to elucidate why those pre-
vious results do not invalidate the demonstration made in
Sect. 4.1 and the results of this work.

Colbeck (1993) proposed a theoretical model based on an
idealized structure of disconnected and equally spaced ice
spheres. In that model the vapor concentration is at satu-
ration at the ice surface (i.e., surface kinetics is infinitely
fast), and the vapor flux between two consecutive spheres can
be analytically computed. In this case, the author concludes
that the vapor diffusion coefficient is between 4 and 7 times
greater than in air. However, as pointed out by Pinzer et al.
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(2012), Colbeck (1993) derives the diffusion coefficient in
snow by computing the flux crossing a single plane between
two spheres and not by averaging over the entire volume.
As the plane between two spheres corresponds to a zone of
maximal thermal gradient without any ice blockage, it is not
surprising that the local microscopic vapor flux is several-
fold that in free air. However, as is seen in Sect. 5.1, comput-
ing the macroscopic flux by performing a volume averaging
of microscopic vapor fluxes over the entire microstructure
significantly reduces the corresponding diffusion coefficient,
down to a value below that of free air.

Christon et al. (1994) performed finite-element microscale
simulations of vapor diffusion in snow under a thermal gra-
dient using an idealized microstructure. They concluded that
the vapor diffusion coefficient is between 1 and 2 times as
large as that in air. Yet, in that study the macroscopic mass
flux is not computed as a volume average but rather “as the
weighted average of the mass flux rates over all of the exte-
rior surfaces of the diffusion domain in order to capture the
bulk vertical mass diffusion rate”. Here, the diffusion domain
refers to the domain where vapor diffusion occurs, i.e., the
pore space. This differs from volume averaging and leads to
an overestimation of the macroscopic flux as the ice space is
not included. As the loss of diffusion space due to the ice is
neglected, the effective diffusion coefficient is overestimated
by a factor of 1/φ.

Similarly, Pinzer et al. (2012) performed finite-element
microscale simulations of vapor diffusion, this time with mi-
crostructures measured by X-ray computed microtomogra-
phy scanning. A diffusion coefficient slightly greater than
that in free air is reported. Pinzer et al. (2012) noted that com-
puting the mass flux crossing a single plane was insufficient
for the reasons discussed in Sect. 3. To derive the macro-
scopic mass flux, Pinzer et al. (2012) computed the average
mass flux in each plane and then averaged over all planes.
However, it appears from the description of their methodol-
ogy that the slice averaging was only performed in the pore
space, not taking into account the reduction in macroscopic
flux due to the presence of ice. As in the case of Chris-
ton et al. (1994), this would explain the diffusion coefficient
higher than in free air. As is shown in Sect. 5, performing
similar numerical simulations and computing the macroscale
flux by total volume averaging leads to diffusion coefficients
below that in free air.

Finally, Hansen and Foslien (2015) and Hansen (2019)
proposed an analytical expression for the effective thermal
conductivity of snow, taking into account the latent heat asso-
ciated with the transport of water vapor. In their model, water
vapor is at constant saturation in the pores (thus correspond-
ing to the case of infinitely fast kinetics) and acts as an inte-
gral part of heat transfer by transporting latent heat between
sublimation and deposition surfaces (as notably proposed
by Yosida et al., 1955). One application of this effective-
thermal-conductivity model is to allow the derivation of the
vapor flux, which leads to the conclusion that the macro-

scopic vapor flux is greater than that in free air. To come
to this conclusion, Hansen and Foslien (2015) determine the
vapor flux by identifying the contribution of latent heat in
their expression of the effective thermal conductivity. How-
ever, during the identification of the latent-heat contribution
to the total energy flux, some of the heat conduction contri-
bution of the ice is attributed to the latent-heat transport. This
leads to an artificially increased vapor flux, and therefore an
overestimated diffusion coefficient. A rederivation of the va-
por flux with the thermal conductivity expression proposed
by Hansen and Foslien (2015) is presented in Appendix C
and leads to a macroscopic vapor flux below that in free air.

Most of the discrepancies between our results and those
of the published literature thus reduce down to computations
of the macroscopic fluxes that are inconsistent with fluxes
expressed per unit surface of snow, as used in snow mod-
els and experimental studies. This leads to an overestimation
of the value of the effective diffusion coefficient. Focusing
on the magnitude of microscopic vapor fluxes as done by
Colbeck (1993) or Christon et al. (1994) is of great interest
for snow metamorphism as they govern the mass transfer be-
tween adjacent ice grains and the recrystallization rate. How-
ever, they do not correspond to the macroscopic mass flux ex-
pressed per unit surface of snow, as measured by Yosida et al.
(1955) and subsequent experimental studies (e.g., Sokratov
and Maeno, 2000). We reiterate that the macroscopic vapor
flux responsible for the redistribution of mass at the macro-
scopic scale and which inspired the hand-to-hand delivery
mechanism corresponds to the volume-averaged flux over the
entire snow microstructure and must include the loss of dif-
fusion space due to the ice.

5 Numerical modeling

In this section we present steady-state 3D numerical simula-
tions of vapor diffusion in snow subjected to a macroscopic
temperature gradient ∇T and a macroscopic vapor gradient
∇C. The macroscopic temperature gradient ∇T is obtained
by imposing the top and bottom temperatures T top and T bot.
The vapor concentrations in the pore space at the top and
bottom of the sample are imposed to correspond to the sat-
uration values for the top and bottom temperatures. We thus
have

|∇C| =
|csat(T

top)− csat(T
bot)|

Lz
, (10)

where Lz is the height of the sample considered. Condi-
tions of zero heat and vapor normal fluxes are imposed on
the other sides of the sample. For simplicity, we only con-
sider the case of vertical temperature and vapor gradients,
although the extension to the other directions is straightfor-
ward. Moreover, we do not take into account the impact of
latent heat on the temperature field. At the microscopic level,
adding latent-heat effects would act as an additional mecha-

https://doi.org/10.5194/tc-15-389-2021 The Cryosphere, 15, 389–406, 2021



396 K. Fourteau et al.: Macroscopic water vapor diffusion is not enhanced in snow

nism transporting heat from the warm sublimating surfaces
towards the cold deposition surfaces. It would cool the sub-
limation surfaces and warm the deposition surfaces, decreas-
ing the thermal gradient in the pore space. Therefore, taking
latent-heat effects into account would not increase the effec-
tive vapor diffusion coefficient.

The thermal conductivities of the ice and the air ki and
ka are set to 2.34 and 0.024 WK−1 m−1, respectively (Riche
and Schneebeli, 2013), and the diffusion coefficient of vapor
in air D0 is set to 2× 10−5 m2 s−1 (Calonne et al., 2014).
The vapor concentration is assumed to follow the Clausius–
Clapeyron and ideal-gas laws, leading to

csat =
M

RT
P0 e

(
1Hs
R
( 1
T0
−

1
T
)
)
, (11)

where M = 18× 10−3 kgmol−1 is the molar mass of wa-
ter, R = 8.314JK−1 mol−1 is the ideal-gas constant, 1Hs =

51× 103 Jmol−1 is the latent heat of sublimation of ice,
T0 = 273.15K is a reference temperature, and P0 = 611Pa
is the saturation pressure of vapor over ice at T0. The dif-
ferent physical constants used in this article are tabulated
in Appendix D with their references. All simulations are
performed with an average temperature (T bot

+ T top)/2=
258K.

The heat and diffusion equations are solved using the
finite-element method with the open-source software Elmer-
FEM (Malinen and Råback, 2013). We use the readily avail-
able ElmerFEM modules dedicated to the heat and diffusion
equations, which are solved with iterative methods. We first
solve the steady-state heat equation in order to obtain the
temperature field in the entire microstructure. The steady-
state vapor diffusion equation is then solved using the satura-
tion concentration at the ice–pore interface resulting from the
previously computed temperature field. In the case of simula-
tions performed on measured snow microstructures, the tetra-
hedral meshes have been derived from X-ray computed mi-
crotomography images using the CGAL meshing library. The
meshes have been refined to capture the ice–pore interface
and contain between 18 and 50 million elements, depending
on the snow sample. Moreover, in the case of snow samples
the meshes have been partitioned into 20 sub-meshes, and
the computations are performed using the parallel comput-
ing abilities of ElmerFEM. Under such conditions, a simula-
tion typically takes a bit less than an hour to run. Finally, the
outputs of the simulations are processed using the ParaView
software to compute the volume averages.

As seen previously, the kinetics of the sublimation and de-
position processes at the ice surface might significantly im-
pact the magnitude of the macroscopic vapor flux. We recall
that in general the boundary condition at the ice–air interface
is given by the Hertz–Knudsen equation:

−D0∇c ·n= αvkin(c− csat), (12)

where vkin ' 140m s−1 at 258K, and α is the sticking coeffi-
cient less than or equal to unity. In general α is not a constant

and depends on the local vapor saturation as well as the crys-
tallographic properties of the underlying ice crystal (Saito,
1996; Libbrecht and Rickerby, 2013).

For each microstructure, several simulations were per-
formed with different values of α in order to assess the im-
pact of the internal boundary conditions (IBCs) applied at
the ice surface. We first performed simulations with con-
stant α equal to 0, 10−5, 10−4, 10−3, 10−2, 10−1, and 1.
Simulations with constant α are referred to as linear-kinetics
simulations in what follows. Among them, a special case
is α = 0, which corresponds to the diffusion of vapor in an
inert porous medium. Moreover, we performed simulations
similar to those of Christon et al. (1994) and Pinzer et al.
(2012), where the Hertz–Knudsen boundary condition is re-
placed with the saturation of vapor at the ice surface, corre-
sponding to the infinitely fast kinetics case. Finally, we per-
formed simulations in which the dependence of α on the lo-
cal vapor saturation is explicitly represented. For that we set
α = exp(−σ0/σ), where σ = (c− csat)/csat, and σ0 = 0.01.
Note that this expression was determined for the attachment
of vapor to the basal and prismatic facets of ice crystals (Lib-
brecht and Rickerby, 2013) and might not properly apply for
the entirety of ice surfaces in snowpacks. Indeed, this law
has been derived using deposition measurement and might
not apply for sublimating surfaces (Beckmann and Lacmann,
1982). Moreover, the presence of vicinal surfaces in snow-
packs, where the proposed law does not apply, is likely
(Legagneux and Domine, 2005). Therefore, the point of us-
ing such a law is to qualitatively study the potential impact of
a dependence of α on the local vapor saturation rather than
to produce quantitative results. Simulations using this law
are referred to as non-linear-kinetics simulations. Finally, the
macroscopic fluxes of the various simulations are computed
by performing a total volume average, as defined in Sect. 3,
and the effective diffusion coefficients are obtained by divid-
ing these macroscopic fluxes by the macroscopic concentra-
tion gradients, i.e., Deff =−F/∇C.

5.1 Idealized structure

We start with an idealized microstructure composed of dis-
connected ice spheres, similar to that used by Colbeck
(1993). The structure is visible in Fig. 3. The domain is
a cuboid with dimensions of 3.7× 3.7× 10mm3 and three
equidistant ice spheres with 3mm diameters, which are ver-
tically aligned at the center of the domain. The distance be-
tween two sphere centers is set to 3.3mm. This microstruc-
ture is characterized by a porosity of 0.619 and a density of
349kgm−3.

The simulations were performed for the different IBCs
described previously and for temperature gradients ranging
from 5 to 200Km−1. The resulting normalized effective dif-
fusion coefficients are displayed in Fig. 4.

We first analyze the 50Km−1 temperature gradient simu-
lations. Illustrations of the microscopic vapor fluxes for three

The Cryosphere, 15, 389–406, 2021 https://doi.org/10.5194/tc-15-389-2021



K. Fourteau et al.: Macroscopic water vapor diffusion is not enhanced in snow 397

Figure 3. Disconnected ice sphere geometry with microscopic vapor fluxes in the pore space and for a 50Km−1 thermal gradient. (a) Inert-
surface case, (b) α = 10−4 case, and (c) infinitely fast kinetics case.

IBCs, namely inert surfaces (α = 0), α = 10−4, and infinitely
fast surface kinetics, are displayed in Fig. 3. In the case of in-
ert surfaces the vapor flux needs to go around the ice grains,
which act as a blockage, leading to tortuous streamlines. In
the case of infinitely fast surface kinetics, the vapor flux does
not need to go around the ice grain and is rather moving from
ice grain to ice grain, in agreement with the suggestion of
Yosida et al. (1955) and the numerical simulations of Pinzer
et al. (2012). Finally, the α = 10−4 case displays an interme-
diate behavior, with some of the vapor flux moving from ice
grain to ice grain, while the rest bypasses the ice. This exem-
plifies that the microscopic vapor fluxes are strongly depen-
dent on the kinetics of the vapor sublimation and deposition
at the ice surface.

In the case of infinitely fast surface kinetics we find a nor-
malized diffusion coefficient of 0.978, i.e., lower than in air,
in agreement with the calculations of Sect. 4.1. Moreover, we
computed the average air temperature gradient (in the pore
space only) and found it to be 79.00Km−1. This is enhanced
compared to the 50 Km−1 macroscopic gradient but still re-
spects the inequality of Eq. (7). While the enhancement of
the thermal gradient increases the microscopic vapor fluxes
in the pores, it does not suffice to counter the loss of diffu-
sion space, and the resulting macroscopic flux is lower than
in free air.

To compare our results to the works of Colbeck (1993),
Christon et al. (1994), and Pinzer et al. (2012), who worked
under a similar assumption of infinitely fast kinetics, we used
two alternate methods, different from total volume averaging,
to compute the vapor flux. The first consists of averaging the
microscopic vapor fluxes in the air space only, and we call the
associated normalized diffusion coefficient Dnorm

air . The sec-
ond one consists of computing the flux crossing a horizontal
plane placed between two spheres, and we call the associated

diffusion coefficientDnorm
plane. As explained in Sect. 4.3, we be-

lieve that the first methodology is akin to works of Christon
et al. (1994) and Pinzer et al. (2012), while the second was
used by Colbeck (1993). Calculations yield aDnorm

air of 1.580
and a Dnorm

plane of 2.986, consistent with the values reported
by Christon et al. (1994), Pinzer et al. (2012), and Colbeck
(1993). By not including the ice in the averaging or by select-
ing a peculiar plane where microscopic vapor fluxes are max-
imum, the macroscopic vapor flux is overestimated, leading
to a diffusion coefficient greater than D0.

The outcome of the other simulations performed with
∇T = 50Km−1 is reported in Fig. 4 and indicates thatDnorm

eff
is maximal in the infinitely fast kinetics case, with a value of
0.978, and minimal in the inert-surface case, with a value of
0.512. Accordingly, the normalized effective diffusion coef-
ficient increases with α and for the cases α = 0.1 and α = 1
differs by less than 0.3 % from the infinitely fast case. The
use of the non-linear-surface-kinetics law leads to a nor-
malized effective diffusion coefficient equal to 0.857, in be-
tween the inert (Dnorm

eff = 0.512) and infinitely fast kinetics
(Dnorm

eff = 0.978) cases.
Similar observations can be made for the simulations per-

formed with other temperature gradients. For the entire range
of gradients tested, the infinitely fast kinetics and inert-
surface cases correspond to the maximal and minimal macro-
scopic fluxes. Moreover, the associated effective diffusion
coefficients are mostly independent of the macroscopic ther-
mal or vapor gradients, suggesting that the effective diffu-
sion coefficients could be intrinsic in these cases. Consistent
results are observed for the simulations where α is constant.
The obtained effective diffusion coefficients are mostly inde-
pendent of the applied macroscopic gradient and are bounded
by the infinitely fast kinetics and inert-surface cases. Note
that the α = 0.1 and α = 1 cases are indistinguishable from
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the infinitely fast kinetics results in Fig. 4. Contrary to the
rest of the simulations, the non-linear IBC yields effective
diffusion coefficients that depend on the magnitude of the
applied gradients. In this case, the macroscopic vapor flux
and the macroscopic vapor concentration gradient are not
proportionally linked by a single and well-defined material
property. Furthermore, for low vapor and thermal gradients
the non-linear case is close to the inert-surface case, while a
transition towards the fast-kinetics case is observed for ther-
mal gradients around 50Km−1. Again, even though the non-
linear law used to express α as a function of local satura-
tion does not necessarily accurately model water molecule
attachment in real snowpacks, it illustrates the effects of a
non-constant α.

5.2 Measured snow microstructures

Other numerical simulations of vapor diffusion have been
performed, this time using measured snow microstructures
instead of the idealized structure of Sect. 5.1. The microstruc-
tures were obtained by X-ray computed microtomography
imaging of snow samples. In total six snow samples were
analyzed, covering the snow types of decomposing and
fragmented precipitation particles (DF), depth hoar (DH),
rounded grains (RG), and melt forms (MF) (Fierz et al.,
2009). The goal is not to provide effective diffusion coeffi-
cients on an exhaustive set of snow microstructural patterns
but to illustrate the effects of the snow microstructure and
surface kinetics on water vapor diffusion.

A close-up view showing the vapor streamlines inside the
melt form sample is provided in Fig. 5. As with the idealized
microstructure, in the inert-surface case vapor tends to go
around the ice grains. In the infinitely fast kinetics case, va-
por moves from ice grain to ice grain, as proposed by Yosida
et al. (1955) and reported by Pinzer et al. (2012).

We start by analyzing the results of the simulations of the
DF sample, characterized by a density of 125kgm−3. Simi-
larly to Sect. 5.1, the simulations were performed by impos-
ing external temperature and vapor gradients, with different
selected IBCs characterizing the kinetics of the vapor subli-
mation and deposition process. The results are displayed in
Fig. 6. As in the idealized case, the inert-surface, infinitely
fast kinetics, and linear-kinetics cases yield normalized effec-
tive diffusion coefficients that are mostly independent of the
applied gradients. Moreover, we observe that Dnorm

eff is mini-
mal in the inert-surface case, with a value of 0.764, and max-
imal in the infinitely fast kinetics case, with a value of 0.982.
As expected, the effective diffusion coefficient is systemati-
cally lower than that of air. The normalized effective diffu-
sion coefficients in the linear-kinetics cases are distributed
between the inert and infinitely fast values and increase with
the value of α. For α = 1, Dnorm

eff differs by less than 0.1%
from the infinitely fast kinetics case.

In contrast, the non-linear-kinetics case leads to a normal-
ized effective diffusion coefficient that depends on the ex-

ternal gradients. As with the idealized disconnected-sphere
structure of Sect. 5.1, we observe that for low gradients the
non-linear case is close to the slow-kinetics simulations and
transition towards faster kinetics with higher gradients. How-
ever, in the case of the DF sample this transition occurs more
slowly and with higher temperature and vapor gradients.

Since the normalized effective diffusion coefficients ap-
pear to be independent of the external thermal and vapor gra-
dient in the case of infinitely fast and linear surface kinet-
ics, we only computed Dnorm

eff with a 50Km−1 gradient for
the five remaining snow samples. We also did not compute
Dnorm

eff with non-linear surface kinetics (i.e., when alpha is not
constant) as we are not confident in the validity of the cho-
sen non-linear law for snow modeling. The resulting Dnorm

eff
values are reported in Table 1 and displayed in Fig. 7 as a
function of the sticking coefficient α. Again, Dnorm

eff is sys-
tematically minimal in the inert-surface case and maximal in
the infinitely fast kinetics case. Figure 7 highlights that the
normalized effective diffusion coefficient exhibits two differ-
ent regimes depending on the value of α. The transition be-
tween the fast- and slow-surface-kinetics regimes occurs for
values of α around 10−3.

We observe that the effective diffusion coefficient is well
correlated with density and show an almost systematic de-
crease in Dnorm

eff with increasing density for all values of α.
The correlation between Dnorm

eff and the specific surface area
is not so well marked, notably for the RG sample that shows
a large value of specific surface area without any clear im-
pact on Dnorm

eff . That being said, our sample set is only com-
posed of six samples, for which density and specific surface
area are correlated. A detailed study of the influence of mi-
crostructural parameters on the effective diffusion coefficient
would require a larger sample set, notably to be able to de-
cipher the independent influence of specific surface area and
density.

6 Discussion

We have shown that the macroscopic vapor flux in snow is
less than the flux in free air under the same water vapor gra-
dient. This result is supported by a formal demonstration, in-
spired by the work of Giddings and LaChapelle (1962) as
well as by numerical simulations of idealized and measured
snow microstructures. While the interaction of water vapor
with the ice structure results in a macroscopic flux larger
than that of the inert-diffusion case, the macroscopic vapor
flux cannot be enhanced compared to the free-air case. We
have shown that most of the previous theoretical studies re-
porting enhanced macroscopic vapor flux compared to free
air used faulty computations of the macroscopic vapor flux,
which resulted in systematic overestimation.

As seen in this work, the sublimation and deposition fluxes
at the ice surface play a great role in the final macroscopic
flux. In particular we have shown that when the reaction is
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Figure 4. Normalized diffusion coefficients Dnorm
eff in the idealized sphere microstructure for different temperature and vapor gradients,

different IBCs, and a mean temperature of 258K. Note that the α = 0.1, α = 1, and infinitely fast kinetics cases are indistinguishable at the
top of the graph.

Figure 5. Vapor streamlines inside the melt form sample for a temperature gradient of 50Km−1 and the inert-surface and infinitely fast
kinetics cases. Note that the arrows showing the vapor flux are centered around the point they represent and might therefore wrongly appear
to originate from or terminate in the ice.

fast, i.e., α is large, the macroscopic fluxes can be close to
those that would be observed in free air. Moreover, the de-
pendence of α on the local vapor saturation might break the
proportionality between the macroscopic vapor gradient and
the macroscopic flux. In this case, it is no longer possible to
define a single effective diffusion coefficient Deff that pro-
portionally relates the vapor flux to vapor gradient and that
solely depends on the snow microstructure. In other words,
with non-linear surface kinetics Deff is not intrinsic. For all
these reasons, it appears important to determine what the pre-
cise internal boundary conditions are that govern the sub-
limation and deposition of water vapor in snowpacks and
in particular to determine whether the inert surfaces or in-
finitely fast kinetics case could accurately describe real snow.
In the case of fast kinetics, one can have Deff ≥ φD0 as the
average microscopic vapor gradient can be greater than the
macroscopic vapor gradient. In contrast, in the case of slow
surface kinetics one has Deff = φτD0 ≤ φD0 since τ ≤ 1.
An experimental distinction between fast and slow kinet-

ics could thus be made by observing whether the quantity
Deff/(φD0) is greater than unity or not. Using the experi-
mental results of Sokratov and Maeno (2000), which are the
experimental results with the lowest reported diffusion coef-
ficient, we observe that Deff/(φD0) is almost always greater
than unity, which supports the notion of fast rather than slow
kinetics. This is consistent with the study of Krol and Löwe
(2016), which reports that fast kinetics is consistent with their
microtomography-based observation of the temperature gra-
dient metamorphism of a snow sample. That being said, ex-
perimental determination of the macroscopic vapor fluxes is
difficult, as exemplified by the large spread of reported val-
ues, and more observations would be needed to make a deci-
sive conclusion on this point.

This work investigated the effective diffusion coefficient
of vapor in snow with a phenomenological approach, where
the diffusion coefficient is simply defined as the ratio of the
macroscopic vapor flux to the vapor concentration gradient.
A rigorous upscaling of the microscale equations to derive
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Figure 6. Normalized diffusion coefficients Dnorm
eff with a DF snow microstructure for different temperature and vapor gradients, different

IBCs, and a mean temperature of 258K. Note that the α = 1 and the infinitely fast kinetics cases are superimposed at the top of the graph
and that the α = 10−5 and the inert-surface cases are indistinguishable at the bottom of the graph.

Table 1. Computed normalized effective diffusion coefficients as a function of surface kinetics (columns) and snow sample (lines). Values
are derived from simulations with a 50Km−1 thermal gradient, but our results suggest that they are independent of the thermal gradient.
Snow types are classified according to Fierz et al. (2009), and SSA stands for specific surface area.

Snow characteristics Dnorm
eff

Snow type Density SSA Infinitely fast α = 1 α = 10−1 α = 10−2 α = 10−3 α = 10−4 α = 10−5 α = 0
(kgm−3) (m2 kg−1) kinetics

DF 125 40 0.982 0.981 0.975 0.935 0.839 0.779 0.766 0.764
DH 145 29 0.982 0.982 0.977 0.943 0.841 0.763 0.744 0.741
DH 156 26 0.977 0.977 0.973 0.942 0.840 0.744 0.718 0.714
DH 177 18 0.963 0.963 0.960 0.937 0.845 0.723 0.674 0.665
RG 316 34 0.913 0.910 0.894 0.807 0.646 0.561 0.539 0.532
MF 380 5 0.796 0.796 0.795 0.779 0.690 0.538 0.466 0.450

the equivalent macroscopic formulation would greatly ben-
efit the understanding and modeling of the macroscopic va-
por flux. Note that such an approach was used by Calonne
et al. (2014) with the method of asymptotic-scale expansion
but limited itself to small α. Applying a similar method to
the case of non-negligible surface sublimation and deposition
would lead to a proper definition of the macroscopic quanti-
ties, notably of the effective diffusion coefficient, and to the
proper formulation of the equations governing the macro-
scopic scale. Furthermore, we assumed in this study that
the macroscopic water vapor gradient is equal to the macro-
scopic gradient of saturated vapor, driven by the macroscopic
thermal gradient. This assumption has been regularly made
in the snow science community (Yosida et al., 1955; Colbeck,
1993; Sokratov and Maeno, 2000; Pinzer et al., 2012) and is
supported by the idea that the ice in the snowpack tends to
impose water vapor saturation at the macroscopic scale. It
however remains possible that the macroscopic water con-

centration deviates from saturation, notably if the deposi-
tion and sublimation kinetics is slow. A rigorous upscaling
method yielding the equations governing macroscopic water
concentration would therefore also help quantifying if such a
situation of non-saturation at the macroscopic scale is likely
to occur in real snowpacks and indicate how the macroscopic
vapor flux should be computed in such a case.

Finally, the fact that there is no macroscopic enhance-
ment of the water vapor flux in snow suggests that most of
the mass flux observed in subarctic and Arctic snow and
which would necessitate effective diffusion coefficients sev-
eral times higher than that of free air to be explained solely
by diffusion (e.g., Sturm and Benson, 1997; Domine et al.,
2016, 2018) could rather be due to convection. The impor-
tance of convective mass transport in subarctic snowpacks
has notably been pointed out by Trabant and Benson (1972)
and Sturm and Johnson (1991) and thus appears to be a good
candidate to explain the high vapor movement in subarctic
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Figure 7. Normalized diffusion coefficients Dnorm
eff as a function of the sticking coefficient α for the six snow samples considered in this

paper.

snowpacks. Currently, detailed snow physics models do not
include the mechanism of convective mass transport (Lehn-
ing et al., 2002; Vionnet et al., 2012) and assume that all mass
transport results from diffusion, sometimes using a diffusion
coefficient larger than that in free air (e.g., Jafari et al., 2020).
Further modeling efforts to include convective mass transport
in detailed snow models could enhance their ability to model
snowpack evolution.

7 Conclusions

This work investigated the macroscopic vapor fluxes that
arise in snowpacks due to large-scale vapor gradients. We
first considered the seminal work of Yosida et al. (1955) and
their formulation of the hand-to-hand delivery mechanism,
which was meant to explain the large vapor flux they mea-
sured. We argue that it is reasonable to assume that the con-
centration of the thermal gradient in the pore space would
lead to strong vapor gradients between ice grains and drive
the sublimation of water molecules from some grains and
subsequent deposition on others. Yet, we disagree with the
proposed idea that the process where one water molecule de-
posits on one side of an ice grain while another molecule sub-
limates on the other side is equivalent to a situation where the
depositing molecule skipped the ice, virtually increasing the
vapor flux.

We demonstrated that the specific internal boundary con-
ditions governing the sublimation and deposition of water
molecules have a significant impact on the macroscopic va-
por flux. In particular, we showed that in the case of infinitely
fast kinetics the macroscopic flux is enhanced compared to
the slow-kinetics case but still cannot exceed the vapor flux
that would happen in free air under an equivalent vapor gra-
dient. This demonstration is confirmed by numerical sim-
ulations of both idealized and measured snow microstruc-
tures. The discrepancies with previous studies that report va-
por fluxes greater than the free-air case originate from er-
roneous computations of how the macroscopic flux was ob-
tained from the microscopic vapor fluxes at the pore scale.

We argue that the method used in this article, i.e., volume av-
eraging over an entire microstructure including the ice, is the
only one consistent with the actual nature of the macroscopic
water vapor flux.

The numerical simulations also indicate that the infinitely
fast kinetics and inert ice surface cases, respectively, are the
upper and lower limits for the vapor flux in snow. The use
of more complex laws describing the sublimation and depo-
sition of water molecules at the ice surface leads to flux val-
ues in between both previously mentioned cases. Moreover,
the use of a non-constant attachment coefficient breaks the
proportionality between the macroscopic vapor flux and the
vapor gradient. In that case, it is no longer possible to define
a constant and intrinsic effective diffusion coefficient, pro-
portionally relating the macroscopic vapor flux to the macro-
scopic concentration gradient, independently of the magni-
tude of applied vapor concentration gradient.
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Appendix A: Demonstration that the macroscopic vapor
flux is maximal under infinitely fast kinetics

The aim of this appendix is to demonstrate that the macro-
scopic vapor flux is maximal in the case of infinitely fast
kinetics. For this we start by applying the spatial-averaging
theorem (Whitaker, 1999) to the vapor concentration in the
pores c

〈∇c〉 = ∇〈c〉+
1
V

∫
0

cndS, (A1)

where 〈•〉 is an operator defined as 〈•〉 = 1
V

∫
Va
•dV , and the

concentration c in the surface integral is the vapor concentra-
tion at the ice–pore interface. Multiplying by D0 and using
the notation introduced in this article for the macroscopic va-
por flux F , we have

F =−D0∇〈c〉−
D0

V

∫
0

cndS. (A2)

Moreover, using the Hertz–Knudsen equation we find that
the concentration at the interface is

c = csat−
D0

αvkin
∇c ·n. (A3)

Equation (A2) can thus be written as

F =−D0∇〈c〉−
D0

V

∫
0

csatndS+
D2

0
V αvkin

∫
0

(∇c ·n)ndS.

(A4)

Applying the same spatial-averaging theorem to the satura-
tion concentration csat, we have

1
V

∫
0

csatndS = 〈∇csat〉−∇〈csat〉. (A5)

Injecting Eq. (A5) in Eq. (A4) thus yields

F =−D0∇〈c〉−D0〈∇csat〉+D0∇〈csat〉

+
D2

0
V αvkin

∫
0

(∇c ·n)ndS. (A6)

As we assume that the macroscopic vapor concentration gra-
dient equals the macroscopic saturation concentration gra-
dient (as in Yosida et al., 1955; Colbeck, 1993; Sokratov
and Maeno, 2000; Pinzer et al., 2012), we have that ∇〈c〉 =
∇〈csat〉. Thus

F =−D0〈∇csat〉+
D2

0
V αvkin

∫
0

(∇c ·n)ndS. (A7)

Figure A1. Schematic showing the normal vector n of deposition
and sublimation surfaces. Ice crystals are represented in blue, and
the thermal and vapor gradients are assumed to point downward.

Let us now assume, without loss of generality, that the
macroscopic vapor and thermal gradients are oriented down-
ward. As seen in Fig. A1, surfaces that are characterized by a
normal vector pointing upward are deposition surfaces. The
product ∇c ·n is therefore negative, and (∇c ·n)n is a vec-
tor pointing downward. Similarly, surfaces that are character-
ized by a normal vector pointing downward are sublimation
surfaces. The product ∇c ·n is thus positive, and the vector
(∇c ·n)n is pointing downward. Therefore, for both types of
surfaces (∇c·n)n is pointing downward. The surface integral
term in Eq. (A7) thus acts in opposition to −〈D0∇csat〉 and
tends to reduce the macroscopic vapor flux. We thus have the
inequality

|F | ≤ |〈D0∇csat〉|. (A8)

We now show that this upper bound is reached in the in-
finitely fast kinetics case. Indeed, under the infinitely fast ki-
netics hypothesis the product αvkin can be treated as going
to infinity. At the same time, the surface integral of Eq. (A7)
remains bounded as the concentration gradient in the vicin-
ity of the interface does not diverge. The surface integral thus
vanishes, and the norm of the vapor flux is given by

|F | = |〈D0∇csat〉|; (A9)

that is to say that the upper bound of the macroscopic vapor
flux is reached under infinitely fast kinetics. Moreover, note
that we rederived that, in the infinitely fast kinetics case, the
macroscopic vapor flux is given by the spatial average of the
saturation vapor concentration in the pore space.

Appendix B: Saturation of vapor in the infinitely fast
surface kinetics case

In the case of infinitely fast surface kinetics and assuming a
linear relation between saturation concentration and temper-
ature, the equations governing the vapor concentration are{

div(−D0∇c)= 0 (�a)

c = csat = AT +B (0),
(B1)
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where A and B are two constants characterizing the linear
relationship between temperature and vapor concentration,
and T is the temperature of the ice surface. Thanks to the
linearity of the divergence and gradient operators and owing
to the fact that ∇B = 0, the equations can be reformulated to{

div(∇θ)= 0 (�a)

θ = T (0),
(B2)

where θ = (c−B)/A, and we have used the fact that D0 is
a non-zero constant to eliminate it from the first equation.
Moreover let us recall that in the air temperature Ta is a solu-
tion of the following Laplace equation:{

div(∇Ta)= 0 (�a)

Ta = T (0).
(B3)

Systems of Eqs. (B2) and (B3) are identical, and since the
solution of such a boundary value problem is unique, it fol-
lows that Ta = θ = (c−B)/A over the entire pore space. It
thus follows that c = ATa+B = csat(Ta) in the pores.

Appendix C: Vapor flux in the Hansen and Folsien
(2015) thermal conductivity

Hansen and Foslien (2015) proposed that the heat flux qs
through a snow sample under a macroscopic thermal gradient
∇T be expressed as

qs = (1−φ)qtub+φqlam, (C1)

where qtub and qlam are the heat fluxes through idealized
snow structures corresponding, respectively, to a tubular
structure and a lamellae structure, submitted to the same
macroscopic thermal gradient ∇T , and φ is the porosity of
the snow sample (not to be confused with the ice volume
fraction). Concerning the tubular microstructure, one has

qtub = (1−φ)ki+φ(ka+LD0
dcsat

dT
)∇T , (C2)

where ki and ka are the thermal conductivities of ice and air,
and L is the latent heat of sublimation of ice. The contribu-
tion of the vapor flux is φLD0

dcsat
dT ∇T , and the vapor flux in

the tubular microstructure is φD0
dcsat
dT ∇T = φD0∇C.

Similarly, concerning the lamellae microstructure one has

qlam =
ki(ka+LD0

dcsat
dT )

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T . (C3)

In their article, Hansen and Foslien (2015) then rewrite qlam
under the form

qlam =
kika

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T

+L
dcsat

dT
kiD0

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T (C4)

and identify the second term with the latent-heat flux. We
however argue that Eq. (C4) is only one way among many to
rewrite qlam under the form A∇T +L dcsat

dT B∇T and thus that
the identification of the latent-heat flux with the second term
of the decomposition is arbitrary.

To derive the latent-heat flux, we first start from Eqs. (79)
and (80) of Hansen and Foslien (2015) and compute the ther-
mal gradients in the ice and in the air, respectively, as

∇Ti =
qlam

ki
=

ka+LD0
dcsat
dT

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T (C5)

and

∇Ta =
qlam

(ka+LD0
dcsat
dT )

=
ki

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T . (C6)

The heat flux qcond through the sole process of conduction is
thus given by

qcond
= (1−φ)ki∇Ti+φka∇Ta

=
kika+ (1−φ)kiLD0

dcsat
dT

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T , (C7)

meaning that the latent-heat flux, which is the remaining con-

tribution to qlam, is qlam− q
cond
=

φkiLD0
dcsat
dT

(1−φ)(ka+LD0
dcsat
dT )+φki

∇T

and that the vapor flux is φkiD0

(1−φ)(ka+LD0
dcsat
dT )+φki

∇C. Note

that the φ term in the numerator is not present in the orig-
inal Hansen and Foslien (2015) demonstration, leading to an
overestimation of the vapor flux.

Finally, the total vapor flux in the Hansen and Foslien
(2015) model is computed as the weighted average of the
tubular and lamellae vapor fluxes

F =
[
φ

φkiD0

(1−φ)(ka+LD0
dcsat
dT )+φki

+ (1−φ)φD0
]
∇C, (C8)

and the expression in square bracket is therefore the effective
vapor diffusion coefficient that one can show to be less than
D0.
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Appendix D: Physical constants

The physical constants used in this article are listed in Ta-
ble D1 with their units, numerical values, and references.

Table D1. Physical constants used in the article.

Symbol Signification Value Reference

D0 Diffusion coefficient of water vapor in the air 2× 10−5 m2 s−1 Calonne et al. (2014)
P0 Saturation pressure of water vapor over ice at 273K 611Pa Lide (2006)
1Hs Latent heat of sublimation of ice 28× 105 Jkg−1 Lide (2006)
ki Thermal conductivity of ice 2.34WK−1 m−1 Riche and Schneebeli (2013)
ka Thermal conductivity of air 0.024WK−1 m−1 Riche and Schneebeli (2013)
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