Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thomas A. Douglas
CORRESPONDING AUTHOR
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Christopher A. Hiemstra
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
now at: US Department of Agriculture, Forest Service, Geospatial Management
Office, Salt Lake City, UT 84138, USA
John E. Anderson
U.S. Army Geospatial Research Laboratory, Corbin Field Station 15315 Magnetic Lane, Woodford, VA 22580, USA
Robyn A. Barbato
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Kevin L. Bjella
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Elias J. Deeb
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Arthur B. Gelvin
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Patricia E. Nelsen
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Stephen D. Newman
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Stephanie P. Saari
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Anna M. Wagner
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Related authors
Jinyang Du, K. Arthur Endsley, Kazem Bakian Dogaheh, John Kimball, Mahta Moghaddam, Tom Douglas, Asem Melebari, Sepehr Eskandari, Jinhyuk Kim, Jane Whitcomb, Yuhuan Zhao, and Sophia Henze
EGUsphere, https://doi.org/10.5194/egusphere-2025-3236, https://doi.org/10.5194/egusphere-2025-3236, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Active layer thickness (ALT) is a sensitive indicator of the thawing Alaskan frozen soil, which may lead to increased greenhouse gas emissions, vegetation changes, and infrastructure damage. This study represents a multi-scale assessment of ALT spatial variations using observations including intensive field sampling, and drone, airborne and satellite remote sensing. Our study allows for improved interpretation of remote sensing and process-based ALT simulations for the changing Arctic.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3936, https://doi.org/10.5194/egusphere-2024-3936, 2025
Short summary
Short summary
We combined field-based snow depth and snow water equivalent (SWE) measurements, remote sensing data, and machine learning to estimate snow depth and SWE over a 10 km2 local scale area in Sodankylä, Finland. Associations were found for snow depth and SWE with carbon- and mineral-based forest surface soils, alongside dry and wet peatbogs. This approach to upscale field-based snow depth and SWE measurements to a local scale can be used in regions that regularly experience snowfall.
Thomas Douglas, Mark Jorgenson, Taylor Sullivan, and Caiyun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3997, https://doi.org/10.5194/egusphere-2024-3997, 2025
Short summary
Short summary
Permafrost thaw across earth’s high latitudes is leading to dramatic changes in vegetation and hydrology. We undertook a two-decade long study on the Tanana Flats near Fairbanks, Alaska to measure permafrost thaw and associated ground surface subsidence via field-based and remote-sensing techniques. The study identified strengths and limitations of the three methods we used to quantify permafrost thaw degradation.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Jinyang Du, K. Arthur Endsley, Kazem Bakian Dogaheh, John Kimball, Mahta Moghaddam, Tom Douglas, Asem Melebari, Sepehr Eskandari, Jinhyuk Kim, Jane Whitcomb, Yuhuan Zhao, and Sophia Henze
EGUsphere, https://doi.org/10.5194/egusphere-2025-3236, https://doi.org/10.5194/egusphere-2025-3236, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Active layer thickness (ALT) is a sensitive indicator of the thawing Alaskan frozen soil, which may lead to increased greenhouse gas emissions, vegetation changes, and infrastructure damage. This study represents a multi-scale assessment of ALT spatial variations using observations including intensive field sampling, and drone, airborne and satellite remote sensing. Our study allows for improved interpretation of remote sensing and process-based ALT simulations for the changing Arctic.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3936, https://doi.org/10.5194/egusphere-2024-3936, 2025
Short summary
Short summary
We combined field-based snow depth and snow water equivalent (SWE) measurements, remote sensing data, and machine learning to estimate snow depth and SWE over a 10 km2 local scale area in Sodankylä, Finland. Associations were found for snow depth and SWE with carbon- and mineral-based forest surface soils, alongside dry and wet peatbogs. This approach to upscale field-based snow depth and SWE measurements to a local scale can be used in regions that regularly experience snowfall.
Thomas Douglas, Mark Jorgenson, Taylor Sullivan, and Caiyun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3997, https://doi.org/10.5194/egusphere-2024-3997, 2025
Short summary
Short summary
Permafrost thaw across earth’s high latitudes is leading to dramatic changes in vegetation and hydrology. We undertook a two-decade long study on the Tanana Flats near Fairbanks, Alaska to measure permafrost thaw and associated ground surface subsidence via field-based and remote-sensing techniques. The study identified strengths and limitations of the three methods we used to quantify permafrost thaw degradation.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Cited articles
Bjella, K.: Dalton Highway 9 to 11 Mile Expedient Resistivity Permafrost
Investigation, Alaska Department of Transportation and Public Facilities
Technical Report, FHWA-AK-RD-13-08, Fairbanks, Alaska, 2014.
Bjella, K.: Imaging of Ground Ice with Surface Based Geophysics, ERDC/CRREL
Technical Report TR-15-14, Hanover, USA, 2015.
Bjella, K.: Improving Design Methodologies and Assessment Tools for Building
on Permafrost in a Warming Climate, ERDC/CRREL Technical Report TR-20-13,
Hanover, USA, 2020.
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of
the active layer at a continuous permafrost site (Taymyr Peninsula,
Siberia), Water Resour. Res., 34, 355–363, 1998.
Bray, M. T., French, H. M., and Shur, Y.: Further cryostratigraphic
observations in the CRREL permafrost tunnel, Fox, Alaska, Permafrost
Periglac. Process., 17, 233–243, 2006.
Brown, D. R. N., Jorgenson, M. T., Douglas, T. A., Romanovsky, V., Kielland,
K., and Euskirchen, E.: Vulnerability of permafrost to fire-initiated thaw
in lowland forests of the Tanana Flats, interior Alaska, J. Geophys. Res.-Biogeo., 120, 1619–1637, https://doi.org/10.1002/2015JG003033, 2015.
Burkert A., Douglas T. A., Waldrop, M. P., and Mackelprang, R.: Changes in the
active, dead, and dormant microbial community structure across a Pleistocene
permafrost chronosequence, Appl. Environ. Microbio., 85, e02646-18, https://doi.org/10.1128/AEM.02646-18, 2019.
Chasmer, L. and Hopkinson, C.: Threshold loss of discontinuous permafrost
and landscape evolution, Glob. Change Biol., 23, 2672–2686,
https://doi.org/10.1111/gcb.13537, 2017.
Circumpolar Active Layer Monitoring Network: https://www2.gwu.edu/~calm/data/north.htm (last access: 11 June 2021), 2020.
Douglas, T. A.: Repeat active layer depths at sites near Fairbanks, Alaska (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4670463, 2021.
Douglas, T. A. and Mellon, M. T.: Sublimation of terrestrial permafrost and
the implications for ice-loss processes on Mars, Nature Comm., 10, 1716, https://doi.org/10.1038/s41467-019-09410-8, 2019.
Douglas, T. A., Jorgenson, M. T., Kanevskiy, M. Z., Romanovsky, V. E., Shur,
Y., and Yoshikawa, K.: Permafrost dynamics at the Fairbanks Permafrost
Experimental Station near Fairbanks, Alaska, Proceedings of the Ninth
International Conference on Permafrost, edited by: Kane, D. and Hinkel, K.,
University of Alaska Fairbanks, 29 June–3 July 2008.
Douglas, T. A., Fortier, D., Shur, Y. I., Kanevskiy, M. Z., Guo, L., Cai,
Y., and Bray, M.: Biogeochemical and geocryological characteristics of wedge
and thermokarst-cave ice in the CRREL Permafrost Tunnel, Alaska, Permafrost
Periglac. Process., 22, 120–128, https://doi.org/10.1002/ppp.709, 2011.
Douglas, T. A., Blum, J. D., Guo, L., Keller, K., and Gleason, J. D.:
Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic
watershed draining discontinuous permafrost in interior Alaska (USA), Chem.
Geol., 335, 48–62, 2013.
Douglas, T. A., Jones, M. C., Hiemstra, C. A., and Arnold, J.: Sources and
sinks of carbon in boreal ecosystems of Interior Alaska: Current and future
perspectives for land managers, Elementa, 2, 000032, https://doi.org/10.12952/journal.elementa.000032, 2014.
Douglas, T. A., Jorgenson, M. T., Brown, D. R. N., Campbell, S. W.,
Hiemstra, C. A., Saari, S. P., Bjella, K., and Liljedahl, A. K.: Degrading
permafrost mapped with electrical resistivity tomography, airborne imagery
and LiDAR, and seasonal thaw measurements, Geophysics, 81, WA71–WA85, https://doi.org/10.1190/GEO2015-0149.1, 2016.
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Alaskan ecosystems, npj
Climate Atmos. Sci., 3, 1–7, 2020.
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai,
C., Frolking, S., Schuur, E. A., Jorgenson, T., Marchenko, S., and
Romanovsky, V.: Vulnerability of high-latitude soil organic carbon in North
America to disturbance, J. Geophys. Res.-Biogeosci., 116, G00K06, https://doi.org/10.1029/2010JG001507, 2011.
Hamilton, T. D., Craig, J. L., and Sellmann, P. V.: The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska, Geol. Soc. Amer. Bull., 100, 948–969, 1988.
Harada, K. and Yoshikawa, K.: Permafrost age and thickness near
Adventfjorden, Spitsbergen, Polar Geography, 20, 267–281, 1996.
Harada, K., Wada, K., and Fukuda, M.: Permafrost mapping by transient
electromagnetic method, Permafrost Periglac. Process., 11, 71–84, 2000.
Heslop, J. K., Winkel, M., Walter Anthony, K. M., Spencer, R. G., Podgorski,
D. C., Zito, P., Kholodov, A., Zhang, M., and Liebner, S.: Increasing organic
carbon biolability with depth in yedoma permafrost: ramifications for future
climate change, J. Geophys. Res.-Biogeosci., 124, 2021–2038, 2019.
Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active
layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in
northern Alaska, 1995–2000, J. Geophys. Res., 108, 8168,
https://doi.org/10.1029/2001JD000927, 2003.
Hjort, J., Karjalainen, O., Aalto, J. Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Comm., 9, 5147, https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hoekstra, P.: Electromagnetic probing of permafrost, in: Proceedings of 2nd
International Conference on Permafrost, Yakutsk, USSR, North American
Contribution, National Academy of Science, 517–526, 1973.
Hubbard, T. D., Braun, M. L., Westbrook, R. E., and Gallagher, P. E.:
High-resolution lidar data for infrastructure corridors, Fairbanks
Quadrangle, Alaska, in: High-resolution lidar data for Alaska infrastructure corridors, edited by: Hubbard, T. D., Koehler, R. D., and Combellick, R. A., Alaska Division of Geological & Geophysical Surveys Raw Data File 2011-3E, https://doi.org/10.14509/22727, 2011.
Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson,
J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C.,
and Wullscheleger, S. D.: Quantifying and relating land-surface and
subsurface variability in permafrost environments using LiDAR and surface
geophysical datasets, Hydrogeol. J., 21, 149–169, 2013.
Jafarov, E. E., Romanovsky, V. E, Genet, H., McGuire, A. D., and Marchenko, S. S.: The effects of fire on the thermal stability of permafrost in lowland
and upland black spruce forests of interior Alaska in a changing climate,
Environ. Res. Lett., 8, 035030, https://doi.org/10.1088/1748-9326/8/3/035030, 2013.
Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C.,
Romanovsky, V., and Turetsky, M.: Fire, climate change, and forest resilience in interior Alaska, Can. J. Forest Res., 40, 1302–1312, 2010.
Jones, B. M., Stoker, J. M., Gibbs, A. E., Grosse, G., Romanovsky, V. E.,
Douglas, T. A., Kinsman, N. E. M., and Richmond, B. M.: Quantifying
landscape change in an arctic coastal lowland using repeat airborne LiDAR,
Environ. Res. Lett., 8, 045025, https://doi.org/10.1088/1748-9326/8/4/045025, 2013.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost degradation and ecological changes associated with a warming
climate in central Alaska, Clim. Change, 48, 551–579, 2001.
Jorgenson, M. and Osterkamp, T.: Response of boreal ecosystems to varying
modes of permafrost degradation, Can. J. For. Res., 35, 2100–2111, 2005.
Jorgenson, M. T., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky V.,
Marchenko, S., Grosse, G., Brown, J., and Jones, B.: Permafrost characteristics of
Alaska, Proceedings of the Ninth International Conference on Permafrost,
edited by: D. Kane, and K. Hinkel, University of Alaska Fairbanks, 29 June–3 July 2008, vol. 29, 121–122, 2008.
Jorgenson, M. T., Harden, J., Kanevskiy, M., O'Donnell, J., Wickland, K.,
Ewing, S., Manies, K., Zhuang, Q., Shur, Y., Striegl, R., and Koch, J.:
Reorganization of vegetation, hydrology and soil carbon after permafrost
degradation across heterogeneous boreal landscapes, Environ. Res. Lett., 16,
8, 035017, https://doi.org/10.1088/1748-9326/8/3/035017, 2013.
Jorgensen, T. and Meidlinger, D.: The Alaska Yukon Region of the Circumboreal
Vegetation map (CBVM), Conservation of Arctic Flora and Fauna (CAFF), available at: https://www.caff.is/strategies-series/359-the-alaska-yukon-region-of-the-circumboreal-vegetation-map-cbvm (last access: 11 February 2021), 2015.
Jorgenson, M. T., Douglas, T. A., Liljedahl, A. K., Roth, J. E., Cater, T.
C., Davis, W. A., Frost, G. V., Miller, P. F., and Racine, C. H.: The roles
of climate extremes, ecological succession, and hydrology in cycles of
permafrost aggradation and degradation in fens on the Tanana Flats, Alaska,
J. Geophys. Res.-Biogeosci., 125, e2020JG005824, https://doi.org/10.1029/2020JG005824, 2020.
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T., and Stephani, E.:
Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in
northern Alaska, Itkillik River exposure, Quat. Res., 75, 584–596, 2011.
Kasischke, E. S. and Johnstone, J. F.: Variation in postfire organic layer
thickness in a black spruce forest complex in interior Alaska and its
effects on soil temperature and moisture, Can. J. For. Res., 35, 2164–2177,
2005.
Kneisel, C.: Assessment of subsurface lithology in mountain environments
using 2D resistivity imaging, Geomorphol., 80, 32–44, 2006.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac. Process., 24, 108–119, 2013.
Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A. V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A. Epstein, H. E., Frost, G. V., Goeckede, M., Høye, T. T., Mamet, S. D., O'Donnell, J. A., Olefeldt, D., Phoenix, G. K., Salmon, V. G., Sannel, A. B. K., Smith, S. L., Sonnentag, O., Vaughn, L. S., Williams, M., Elberling, B., Gough, L., Hjort, J., Lafleur, P. M., Euskirchen, E. S., Heijmans, M. M. P. D., Humphreys, E. R., Iwata, H., Jones, B. M., Jorgenson, M. T., Grünberg, I., Kim, Y., Laundre, J., Mauritz, M., Michelsen, A., Schaepman-Strub, G., Tape, K. D. Ueyama, M., Lee, B.-Y., Langley, K., and Lund, M.: Vegetation stature controls air-soil temperature
coupling across pan-Arctic ecosystems, Environ. Res. Lett., 85, 015001, https://doi.org/10.1088/1748-9326/abc994, 2020.
Lader, R., Walsh, J. E., Bhatt, U. S., and Bieniek, P. A.: Projections of
twenty-first-century climate extremes for Alaska via dynamical downscaling
and quantile mapping, J. Appl. Meteorol. Climatol., 56, 2393–2409,
2017.
Latifovic, R., Pouliot, D., and Olthof, I.: Circa 2010 Land Cover of Canada:
Local Optimization Methodology and Product Development, Rem. Sens., 9,
1098, https://doi.org/10.3390/rs9111098, 2017.
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger thousands
of thermokarst landslides in a High Arctic environment, Nature Comm., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7,
2019.
Lewkowicz, A. G., Etzelmüller, B., and Smith, S. L.: Characteristics of
discontinuous permafrost based on ground temperature measurements and
electrical resistivity tomography, southern Yukon, Canada, Permafrost
Periglac. Process., 22, 320–342, 2011.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
and Necsoiu, M.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geosci., 4, 312–318, 2016.
Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow
trends (1979–2009), J. Climate, 24, 5691–5712, 2011.
Loke, M. H. and Barker, R. D.: Rapid least-squares inversion of apparent
resistivity pseudosections by a quasi-Newton method 1, Geophys. Prospect.,
44, 131–152, 1996.
Loke, M. H., Acworth, I., and Dahlin, T.: A comparison of smooth and blocky
inversion methods in 2D electrical imaging surveys, Exploration Geophys.,
34, 182–187, 2003.
Loranty, M. M., Abbott, B. W., Blok, D., Douglas, T. A., Epstein, H. E., Forbes, B. C., Jones, B. M., Kholodov, A. L., Kropp, H., Malhotra, A., Mamet, S. D., Myers-Smith, I. H., Natali, S. M., O'Donnell, J. A., Phoenix, G. K., Rocha, A. V., Sonnentag, O., Tape, K. D., and Walker, D. A.: Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions, Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, 2018.
Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria,
K. L., Blazewicz, S. J., Rubin, E. M., and Jansoon, J. K.: Metagenomic
analysis of a permafrost microbial community reveals a rapid response to
thaw, Nature, 480, 368–371, 2011.
Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C. H.,
Douglas, T. A., and Waldrop, M. P.: Microbial survival strategies in ancient
permafrost: insights from metagenomics, ISME Journal, 11, 2305–2318,
2017.
McClymont, A. F., Hayashi, M., Bentley, L. R., and Christensen, B. S.:
Geophysical imaging and thermal modeling of subsurface morphology and thaw
evolution of discontinuous permafrost, J. Geophys. Res.-Earth Surf.,
118, 1826–1837, 2013.
Messan, K. S., Jones, R. M., Doherty, S. J., Foley, K., Douglas, T. A., and
Barbato, R. A.: The role of changing temperature in microbial metabolic
processes during permafrost thaw, PloS one, 15, e0232169, https://doi.org/10.1371/journal.pone.0232169, 2020.
Minsley, B. J., Wellman, T. P., Walvoord, M. A., and Revil, A.: Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw, The Cryosphere, 9, 781–794, https://doi.org/10.5194/tc-9-781-2015, 2015.
Minsley, B. J., Pastick, N. J., Wylie, B. K., Brown, D. R., and Kass, M. A.:
Evidence for nonuniform permafrost degradation after fire in boreal
landscapes, J. Geophys. Res.-Earth Surf., 121, 320–335, 2016.
Myers-Smith, I. H., Harden, J. W., Wilmking, M., Fuller, C. C., McGuire, A. D., and Chapin III, F. S.: Wetland succession in a permafrost collapse: interactions between fire and thermokarst, Biogeosciences, 5, 1273–1286, https://doi.org/10.5194/bg-5-1273-2008, 2008.
Neumann, R. B., Moorberg, C. J., Lundquist, J. D., Turner, J. C., Waldrop,
M. P., McFarland, J. W., Euskirchen, E. S., Edgar, C. W., and Turetsky, M.
R.: Warming effects of spring rainfall increase methane emissions from
thawing permafrost, Geophysi. Res. Lett., 46, 1393–1401, 2019.
Nicholas, J. R. and Hinkel, K. M.: Concurrent permafrost aggradation and
degradation induced by forest clearing, central Alaska, USA, Arctic, Ant.,
Alp. Res., 28, 294–299, 1996.
Nossov, D. R., Jorgenson, M. T., Kielland, K., and Kanevskiy, M. Z.: Edaphic and
microclimatic controls over permafrost response to fire in interior Alaska,
Environ. Res. Lett., 8, 035013, https://doi.org/10.1088/1748-9326/8/3/035013, 2013.
Osterkamp, T. and Romanovsky, V.: Evidence for warming and thawing of
discontinuous permafrost in Alaska, Permafrost Periglac. Process., 10,
17–37, 1999.
Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Nield, S. J., Johnson, K.
D., and Finley, A. O.: Distribution of near-surface permafrost in Alaska:
Estimates of present and future conditions, Remote Sens. Environ., 168,
301–315, 2015.
Phillips, M. R., Burn, C. R., Wolfe, S. A., Morse, P. D., Gaanderse, A. J., O'Neill, H. B., Shugar, D. H., and Gruber, S.: Improving water content description of ice-rich permafrost soils, Proceedings of the 7th Canadian Permafrost Conference Québec City, 68, https://doi.org/10.13140/RG.2.1.4760.1126, 2015.
Racine, C. H. and Walters, J. C.: Groundwater-discharge fens in the Tanana
Lowlands, Interior Alaska, USA, Arctic Alpine Res., 26, 418–426, 1994.
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov,
M. M., Daniëls, F. J., Eidesen, P. B., Ermokhina, K. A., Frost, G. V.,
and Jedrzejek, B.: A raster version of the Circumpolar Arctic Vegetation Map
(CAVM), Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297, 2019.
Rey, D. M., Walvoord, M. A., Minsley, B. J., Ebel, B. A., Voss, C. I., and
Singha, K.: Wildfire initiated talik development exceeds current thaw
projections: Observations and models from Alaska's continuous permafrost
zone, Geophys. Res. Lett., 47, e2020GL087565. https://doi.org/10.1029/2020GL087565, 2020.
Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J.
F., Gryziec, J. D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft,
D. P., and Liu, L.: Permafrost stores a globally significant amount of mercury,
Geophys. Res. Lett., 45, 1463–1471, 2018.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D.,
Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal
variations of active-layer thickness in moisture-controlled landscapes,
Barrow Alaska, J. Geophys. Res., 115, G00I04, https://doi.org/10.1029/2009JG001248,
2010.
Shur, Y. L., Hinkel, K. M., and Nelson, F. E.: The transient layer:
Implications for geocryology and global-change science, Permafrost Periglac.
Process., 16, 5–17, 2005.
Shur, Y. and Jorgenson, M.: Patterns of permafrost formation and degradation
in relation to climate and ecosystems, Permafrost Periglac. Process., 18,
7–19, 2007.
Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing
Arctic lakes, Science, 308, 1429–1429, 2005.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H. W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40, 6165–6170,
2013.
Strauss, J., Laboor, S., and Fedorov, A. N.: Database of ice-rich Yedoma
permafrost (IRYP), PANGAEA, https://doi.org/10.1594/PANGAEA.861733, 2016.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S., Schuur,
E. A., and Shmelev, D.: Deep Yedoma permafrost: A synthesis of depositional
characteristics and carbon vulnerability, Earth Sci. Rev., 172, 75–86, 2017.
Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov,
N., Spencer, R. G., Bulygina, E. B., Eglinton, T. I., and Holmes, R. M.:
Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge
thaw, Environ. Res. Lett., 8, 035023, https://doi.org/10.1088/1748-9326/8/3/035023, 2013.
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H., Ahlquist, L.
E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V.,
Carroll, A. B., and Epstein, H. E.: Plant community responses to experimental
warming across the tundra biome, P. Natl. Acad. Sci. USA, 103,
1342–1346, 2006.
Way, R. G., Lewkowicz, A. G., and Zhang, Y.: Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada, The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, 2018.
Wendler, G. and Shulski, M.: A century of climate change for Fairbanks,
Alaska, Arctic, 62, 295–300, 2009.
Wilhelm, R. C., Niederberger, T. D., Greer, C., and Whyte, L. G.: Microbial
diversity of active layer and permafrost in an acidic wetland from the
Canadian High Arctic, Can. J., Microbiol., 57, 303–315, 2011.
Wolken, J. M., Hollingsworth, T. N., Rupp, T. S., Chapin III, F. S.,
Trainor, S. F., Barrett, T. M., Sullivan, P. F., McGuire, A. D., Euskirchen,
E. S., Hennon, P. E., and Beever, E. A.: Evidence and implications of
recent and projected climate change in Alaska's forest ecosystems,
Ecosphere, 2, 1–35, 2011.
Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U., Zona, D., and Oechel, W. C.: Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska, The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, 2018.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater
dynamics in discontinuous permafrost near Council, Alaska, Permafrost
Periglac. Proc., 14, 151–160, 2003.
Yoshikawa, K., Leuschen, C., Ikeda, A., Harada, K., Gogineni, P., Hoekstra,
P., Hinzman, L., Sawada, Y., and Matsuoka, N.: Comparison of geophysical
investigations for detection of massive ground ice (pingo ice), J. Geophys.
Res.-Planets, 111, E06S19, https://doi.org/10.1029/2005JE002573, 2006.
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Permafrost is actively degrading across high latitudes due to climate warming. We combined...