Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3555-2021
https://doi.org/10.5194/tc-15-3555-2021
Research article
 | Highlight paper
 | 
03 Aug 2021
Research article | Highlight paper |  | 03 Aug 2021

Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar

Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner

Related authors

Object-based ensemble estimation of snow depth and snow water equivalent over multiple months in Sodankylä, Finland
David Brodylo, Lauren V. Bosche, Ryan R. Busby, Elias J. Deeb, Thomas A. Douglas, and Juha Lemmetyinen
The Cryosphere, 19, 6127–6148, https://doi.org/10.5194/tc-19-6127-2025,https://doi.org/10.5194/tc-19-6127-2025, 2025
Short summary
A Comprehensive Database of Thawing Permafrost Locations Across Alaska
Hailey Webb, Ethan Pierce, Benjamin W. Abbott, William B. Bowden, Yaping Chen, Yating Chen, Thomas A. Douglas, Joel F. Eklof, Eugénie S. Euskirchen, Moritz Langer, Isla H. Myers-Smith, Irina Overeem, Jens Strauss, Katey Walter Anthony, Kang Wang, Matthew A. Whitley, and Merritt R. Turetsky
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-557,https://doi.org/10.5194/essd-2025-557, 2025
Preprint under review for ESSD
Short summary
Characterizing Near-Surface Permafrost in Utqiaġvik, Alaska, using Electrical Resistivity Tomography and Ground Penetrating Radar
Valentina Ekimova, MacKenzie A. Nelson, Taylor Sullivan, Thomas A. Douglas, Howard E. Epstein, and Matthew G. Jull
EGUsphere, https://doi.org/10.5194/egusphere-2025-4702,https://doi.org/10.5194/egusphere-2025-4702, 2025
Short summary
Comparing thaw probing, electrical resistivity tomography, and airborne lidar to quantify lateral and vertical thaw in rapidly degrading boreal permafrost
Thomas A. Douglas, M. Torre Jorgenson, Taylor Sullivan, and Caiyun Zhang
The Cryosphere, 19, 3991–4009, https://doi.org/10.5194/tc-19-3991-2025,https://doi.org/10.5194/tc-19-3991-2025, 2025
Short summary
Assessing spatial heterogeneity of active layer thickness over Arctic-foothills tundra through intensive field sampling and multi-source remote sensing
Jinyang Du, K. Arthur Endsley, Kazem Bakian Dogaheh, John Kimball, Mahta Moghaddam, Tom Douglas, Asem Melebari, Sepehr Eskandari, Jinhyuk Kim, Jane Whitcomb, Yuhuan Zhao, and Sophia Henze
EGUsphere, https://doi.org/10.5194/egusphere-2025-3236,https://doi.org/10.5194/egusphere-2025-3236, 2025
Short summary

Cited articles

Bjella, K.: Dalton Highway 9 to 11 Mile Expedient Resistivity Permafrost Investigation, Alaska Department of Transportation and Public Facilities Technical Report, FHWA-AK-RD-13-08, Fairbanks, Alaska, 2014. 
Bjella, K.: Imaging of Ground Ice with Surface Based Geophysics, ERDC/CRREL Technical Report TR-15-14, Hanover, USA, 2015. 
Bjella, K.: Improving Design Methodologies and Assessment Tools for Building on Permafrost in a Warming Climate, ERDC/CRREL Technical Report TR-20-13, Hanover, USA, 2020. 
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia), Water Resour. Res., 34, 355–363, 1998. 
Bray, M. T., French, H. M., and Shur, Y.: Further cryostratigraphic observations in the CRREL permafrost tunnel, Fox, Alaska, Permafrost Periglac. Process., 17, 233–243, 2006. 
Download
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Share