Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thomas A. Douglas
CORRESPONDING AUTHOR
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Christopher A. Hiemstra
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
now at: US Department of Agriculture, Forest Service, Geospatial Management
Office, Salt Lake City, UT 84138, USA
John E. Anderson
U.S. Army Geospatial Research Laboratory, Corbin Field Station 15315 Magnetic Lane, Woodford, VA 22580, USA
Robyn A. Barbato
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Kevin L. Bjella
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Elias J. Deeb
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Arthur B. Gelvin
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Patricia E. Nelsen
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Stephen D. Newman
U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme
Road, Hanover, NH 03755, USA
Stephanie P. Saari
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Anna M. Wagner
U.S. Army Cold Regions Research and Engineering Laboratory, 9th
Avenue, Building 4070, Fort Wainwright, AK 99709, USA
Related authors
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-526, https://doi.org/10.5194/essd-2024-526, 2024
Preprint under review for ESSD
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, https://doi.org/10.5194/bg-15-5287-2018, 2018
Short summary
Short summary
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the Arctic and sub-Arctic. These effects will cause differences rates of permafrost thaw related to the distribution of tundra and boreal forests. As the distribution of forests and tundra change, the effects of climate change on permafrost will also change. We review the ecosystem processes that will influence permafrost thaw and outline how they will feed back to climate warming.
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-526, https://doi.org/10.5194/essd-2024-526, 2024
Preprint under review for ESSD
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, https://doi.org/10.5194/bg-15-5287-2018, 2018
Short summary
Short summary
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the Arctic and sub-Arctic. These effects will cause differences rates of permafrost thaw related to the distribution of tundra and boreal forests. As the distribution of forests and tundra change, the effects of climate change on permafrost will also change. We review the ecosystem processes that will influence permafrost thaw and outline how they will feed back to climate warming.
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
Related subject area
Discipline: Frozen ground | Subject: Geomorphology
Review article: Retrogressive thaw slump characteristics and terminology
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics
Characterizing ground ice content and origin to better understand the seasonal surface dynamics of the Gruben rock glacier and the adjacent Gruben debris-covered glacier (southern Swiss Alps)
Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Permafrost degradation at two monitored palsa mires in north-west Finland
Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain
Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Samuel Gagnon, Daniel Fortier, Étienne Godin, and Audrey Veillette
The Cryosphere, 18, 4743–4763, https://doi.org/10.5194/tc-18-4743-2024, https://doi.org/10.5194/tc-18-4743-2024, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated two TEGs in the Canadian High Arctic. We found that, while the formation of a TEG leaves permanent geomorphological scars in landscapes, in the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1283, https://doi.org/10.5194/egusphere-2024-1283, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multidisciplinary approach to better understand the influence of the internal structure of the Gruben glacier forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Mengzhen Li, Yanmin Yang, Zhaoyu Peng, and Gengnian Liu
The Cryosphere, 18, 1–16, https://doi.org/10.5194/tc-18-1-2024, https://doi.org/10.5194/tc-18-1-2024, 2024
Short summary
Short summary
We map a detailed rock glaciers inventory to further explore the regional distribution controlling factors, water storage, and permafrost probability distribution in Guokalariju. Results show that (i) the distribution of rock glaciers is controlled by the complex composition of topo-climate factors, increases in precipitation are conducive to rock glaciers forming at lower altitudes, and (ii) 1.32–3.60 km3 of water is stored in the rock glaciers, or ~ 59 % of the water glaciers presently store.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary
Short summary
The study revealed a stable and even decreasing thickness of thaw depth in peat mounds with perennially frozen cores, despite overall rapid permafrost degradation within 14 years. This means that measuring the thickness of the thawed layer – a commonly used method – is alone insufficient to assess the permafrost conditions in subarctic peatlands. The study showed that climate change is the main driver of these permafrost features’ decay, but its effect depends on the peatland’s local conditions.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Matthias Rode, Oliver Sass, Andreas Kellerer-Pirklbauer, Harald Schnepfleitner, and Christoph Gitschthaler
The Cryosphere, 14, 1173–1186, https://doi.org/10.5194/tc-14-1173-2020, https://doi.org/10.5194/tc-14-1173-2020, 2020
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020, https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary
Short summary
We studied an ice-cored rock glacier in Taylor Valley, Antarctica, coupling ground-penetrating radar analyses with stable isotope and major ion geochemistry of (a) surface ponds and (b) buried clean ice. These analyses indicate that the rock glacier ice is fed by a nearby alpine glacier, recording multiple Holocene to late Pleistocene glacial advances. We demonstrate the potential to use rock glaciers and buried ice, common throughout Antarctica, to map previous glacial extents.
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Cited articles
Bjella, K.: Dalton Highway 9 to 11 Mile Expedient Resistivity Permafrost
Investigation, Alaska Department of Transportation and Public Facilities
Technical Report, FHWA-AK-RD-13-08, Fairbanks, Alaska, 2014.
Bjella, K.: Imaging of Ground Ice with Surface Based Geophysics, ERDC/CRREL
Technical Report TR-15-14, Hanover, USA, 2015.
Bjella, K.: Improving Design Methodologies and Assessment Tools for Building
on Permafrost in a Warming Climate, ERDC/CRREL Technical Report TR-20-13,
Hanover, USA, 2020.
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of
the active layer at a continuous permafrost site (Taymyr Peninsula,
Siberia), Water Resour. Res., 34, 355–363, 1998.
Bray, M. T., French, H. M., and Shur, Y.: Further cryostratigraphic
observations in the CRREL permafrost tunnel, Fox, Alaska, Permafrost
Periglac. Process., 17, 233–243, 2006.
Brown, D. R. N., Jorgenson, M. T., Douglas, T. A., Romanovsky, V., Kielland,
K., and Euskirchen, E.: Vulnerability of permafrost to fire-initiated thaw
in lowland forests of the Tanana Flats, interior Alaska, J. Geophys. Res.-Biogeo., 120, 1619–1637, https://doi.org/10.1002/2015JG003033, 2015.
Burkert A., Douglas T. A., Waldrop, M. P., and Mackelprang, R.: Changes in the
active, dead, and dormant microbial community structure across a Pleistocene
permafrost chronosequence, Appl. Environ. Microbio., 85, e02646-18, https://doi.org/10.1128/AEM.02646-18, 2019.
Chasmer, L. and Hopkinson, C.: Threshold loss of discontinuous permafrost
and landscape evolution, Glob. Change Biol., 23, 2672–2686,
https://doi.org/10.1111/gcb.13537, 2017.
Circumpolar Active Layer Monitoring Network: https://www2.gwu.edu/~calm/data/north.htm (last access: 11 June 2021), 2020.
Douglas, T. A.: Repeat active layer depths at sites near Fairbanks, Alaska (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4670463, 2021.
Douglas, T. A. and Mellon, M. T.: Sublimation of terrestrial permafrost and
the implications for ice-loss processes on Mars, Nature Comm., 10, 1716, https://doi.org/10.1038/s41467-019-09410-8, 2019.
Douglas, T. A., Jorgenson, M. T., Kanevskiy, M. Z., Romanovsky, V. E., Shur,
Y., and Yoshikawa, K.: Permafrost dynamics at the Fairbanks Permafrost
Experimental Station near Fairbanks, Alaska, Proceedings of the Ninth
International Conference on Permafrost, edited by: Kane, D. and Hinkel, K.,
University of Alaska Fairbanks, 29 June–3 July 2008.
Douglas, T. A., Fortier, D., Shur, Y. I., Kanevskiy, M. Z., Guo, L., Cai,
Y., and Bray, M.: Biogeochemical and geocryological characteristics of wedge
and thermokarst-cave ice in the CRREL Permafrost Tunnel, Alaska, Permafrost
Periglac. Process., 22, 120–128, https://doi.org/10.1002/ppp.709, 2011.
Douglas, T. A., Blum, J. D., Guo, L., Keller, K., and Gleason, J. D.:
Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic
watershed draining discontinuous permafrost in interior Alaska (USA), Chem.
Geol., 335, 48–62, 2013.
Douglas, T. A., Jones, M. C., Hiemstra, C. A., and Arnold, J.: Sources and
sinks of carbon in boreal ecosystems of Interior Alaska: Current and future
perspectives for land managers, Elementa, 2, 000032, https://doi.org/10.12952/journal.elementa.000032, 2014.
Douglas, T. A., Jorgenson, M. T., Brown, D. R. N., Campbell, S. W.,
Hiemstra, C. A., Saari, S. P., Bjella, K., and Liljedahl, A. K.: Degrading
permafrost mapped with electrical resistivity tomography, airborne imagery
and LiDAR, and seasonal thaw measurements, Geophysics, 81, WA71–WA85, https://doi.org/10.1190/GEO2015-0149.1, 2016.
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Alaskan ecosystems, npj
Climate Atmos. Sci., 3, 1–7, 2020.
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai,
C., Frolking, S., Schuur, E. A., Jorgenson, T., Marchenko, S., and
Romanovsky, V.: Vulnerability of high-latitude soil organic carbon in North
America to disturbance, J. Geophys. Res.-Biogeosci., 116, G00K06, https://doi.org/10.1029/2010JG001507, 2011.
Hamilton, T. D., Craig, J. L., and Sellmann, P. V.: The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska, Geol. Soc. Amer. Bull., 100, 948–969, 1988.
Harada, K. and Yoshikawa, K.: Permafrost age and thickness near
Adventfjorden, Spitsbergen, Polar Geography, 20, 267–281, 1996.
Harada, K., Wada, K., and Fukuda, M.: Permafrost mapping by transient
electromagnetic method, Permafrost Periglac. Process., 11, 71–84, 2000.
Heslop, J. K., Winkel, M., Walter Anthony, K. M., Spencer, R. G., Podgorski,
D. C., Zito, P., Kholodov, A., Zhang, M., and Liebner, S.: Increasing organic
carbon biolability with depth in yedoma permafrost: ramifications for future
climate change, J. Geophys. Res.-Biogeosci., 124, 2021–2038, 2019.
Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active
layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in
northern Alaska, 1995–2000, J. Geophys. Res., 108, 8168,
https://doi.org/10.1029/2001JD000927, 2003.
Hjort, J., Karjalainen, O., Aalto, J. Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Comm., 9, 5147, https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hoekstra, P.: Electromagnetic probing of permafrost, in: Proceedings of 2nd
International Conference on Permafrost, Yakutsk, USSR, North American
Contribution, National Academy of Science, 517–526, 1973.
Hubbard, T. D., Braun, M. L., Westbrook, R. E., and Gallagher, P. E.:
High-resolution lidar data for infrastructure corridors, Fairbanks
Quadrangle, Alaska, in: High-resolution lidar data for Alaska infrastructure corridors, edited by: Hubbard, T. D., Koehler, R. D., and Combellick, R. A., Alaska Division of Geological & Geophysical Surveys Raw Data File 2011-3E, https://doi.org/10.14509/22727, 2011.
Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson,
J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C.,
and Wullscheleger, S. D.: Quantifying and relating land-surface and
subsurface variability in permafrost environments using LiDAR and surface
geophysical datasets, Hydrogeol. J., 21, 149–169, 2013.
Jafarov, E. E., Romanovsky, V. E, Genet, H., McGuire, A. D., and Marchenko, S. S.: The effects of fire on the thermal stability of permafrost in lowland
and upland black spruce forests of interior Alaska in a changing climate,
Environ. Res. Lett., 8, 035030, https://doi.org/10.1088/1748-9326/8/3/035030, 2013.
Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C.,
Romanovsky, V., and Turetsky, M.: Fire, climate change, and forest resilience in interior Alaska, Can. J. Forest Res., 40, 1302–1312, 2010.
Jones, B. M., Stoker, J. M., Gibbs, A. E., Grosse, G., Romanovsky, V. E.,
Douglas, T. A., Kinsman, N. E. M., and Richmond, B. M.: Quantifying
landscape change in an arctic coastal lowland using repeat airborne LiDAR,
Environ. Res. Lett., 8, 045025, https://doi.org/10.1088/1748-9326/8/4/045025, 2013.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost degradation and ecological changes associated with a warming
climate in central Alaska, Clim. Change, 48, 551–579, 2001.
Jorgenson, M. and Osterkamp, T.: Response of boreal ecosystems to varying
modes of permafrost degradation, Can. J. For. Res., 35, 2100–2111, 2005.
Jorgenson, M. T., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky V.,
Marchenko, S., Grosse, G., Brown, J., and Jones, B.: Permafrost characteristics of
Alaska, Proceedings of the Ninth International Conference on Permafrost,
edited by: D. Kane, and K. Hinkel, University of Alaska Fairbanks, 29 June–3 July 2008, vol. 29, 121–122, 2008.
Jorgenson, M. T., Harden, J., Kanevskiy, M., O'Donnell, J., Wickland, K.,
Ewing, S., Manies, K., Zhuang, Q., Shur, Y., Striegl, R., and Koch, J.:
Reorganization of vegetation, hydrology and soil carbon after permafrost
degradation across heterogeneous boreal landscapes, Environ. Res. Lett., 16,
8, 035017, https://doi.org/10.1088/1748-9326/8/3/035017, 2013.
Jorgensen, T. and Meidlinger, D.: The Alaska Yukon Region of the Circumboreal
Vegetation map (CBVM), Conservation of Arctic Flora and Fauna (CAFF), available at: https://www.caff.is/strategies-series/359-the-alaska-yukon-region-of-the-circumboreal-vegetation-map-cbvm (last access: 11 February 2021), 2015.
Jorgenson, M. T., Douglas, T. A., Liljedahl, A. K., Roth, J. E., Cater, T.
C., Davis, W. A., Frost, G. V., Miller, P. F., and Racine, C. H.: The roles
of climate extremes, ecological succession, and hydrology in cycles of
permafrost aggradation and degradation in fens on the Tanana Flats, Alaska,
J. Geophys. Res.-Biogeosci., 125, e2020JG005824, https://doi.org/10.1029/2020JG005824, 2020.
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T., and Stephani, E.:
Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in
northern Alaska, Itkillik River exposure, Quat. Res., 75, 584–596, 2011.
Kasischke, E. S. and Johnstone, J. F.: Variation in postfire organic layer
thickness in a black spruce forest complex in interior Alaska and its
effects on soil temperature and moisture, Can. J. For. Res., 35, 2164–2177,
2005.
Kneisel, C.: Assessment of subsurface lithology in mountain environments
using 2D resistivity imaging, Geomorphol., 80, 32–44, 2006.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac. Process., 24, 108–119, 2013.
Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A. V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A. Epstein, H. E., Frost, G. V., Goeckede, M., Høye, T. T., Mamet, S. D., O'Donnell, J. A., Olefeldt, D., Phoenix, G. K., Salmon, V. G., Sannel, A. B. K., Smith, S. L., Sonnentag, O., Vaughn, L. S., Williams, M., Elberling, B., Gough, L., Hjort, J., Lafleur, P. M., Euskirchen, E. S., Heijmans, M. M. P. D., Humphreys, E. R., Iwata, H., Jones, B. M., Jorgenson, M. T., Grünberg, I., Kim, Y., Laundre, J., Mauritz, M., Michelsen, A., Schaepman-Strub, G., Tape, K. D. Ueyama, M., Lee, B.-Y., Langley, K., and Lund, M.: Vegetation stature controls air-soil temperature
coupling across pan-Arctic ecosystems, Environ. Res. Lett., 85, 015001, https://doi.org/10.1088/1748-9326/abc994, 2020.
Lader, R., Walsh, J. E., Bhatt, U. S., and Bieniek, P. A.: Projections of
twenty-first-century climate extremes for Alaska via dynamical downscaling
and quantile mapping, J. Appl. Meteorol. Climatol., 56, 2393–2409,
2017.
Latifovic, R., Pouliot, D., and Olthof, I.: Circa 2010 Land Cover of Canada:
Local Optimization Methodology and Product Development, Rem. Sens., 9,
1098, https://doi.org/10.3390/rs9111098, 2017.
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger thousands
of thermokarst landslides in a High Arctic environment, Nature Comm., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7,
2019.
Lewkowicz, A. G., Etzelmüller, B., and Smith, S. L.: Characteristics of
discontinuous permafrost based on ground temperature measurements and
electrical resistivity tomography, southern Yukon, Canada, Permafrost
Periglac. Process., 22, 320–342, 2011.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
and Necsoiu, M.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nature Geosci., 4, 312–318, 2016.
Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow
trends (1979–2009), J. Climate, 24, 5691–5712, 2011.
Loke, M. H. and Barker, R. D.: Rapid least-squares inversion of apparent
resistivity pseudosections by a quasi-Newton method 1, Geophys. Prospect.,
44, 131–152, 1996.
Loke, M. H., Acworth, I., and Dahlin, T.: A comparison of smooth and blocky
inversion methods in 2D electrical imaging surveys, Exploration Geophys.,
34, 182–187, 2003.
Loranty, M. M., Abbott, B. W., Blok, D., Douglas, T. A., Epstein, H. E., Forbes, B. C., Jones, B. M., Kholodov, A. L., Kropp, H., Malhotra, A., Mamet, S. D., Myers-Smith, I. H., Natali, S. M., O'Donnell, J. A., Phoenix, G. K., Rocha, A. V., Sonnentag, O., Tape, K. D., and Walker, D. A.: Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions, Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, 2018.
Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria,
K. L., Blazewicz, S. J., Rubin, E. M., and Jansoon, J. K.: Metagenomic
analysis of a permafrost microbial community reveals a rapid response to
thaw, Nature, 480, 368–371, 2011.
Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C. H.,
Douglas, T. A., and Waldrop, M. P.: Microbial survival strategies in ancient
permafrost: insights from metagenomics, ISME Journal, 11, 2305–2318,
2017.
McClymont, A. F., Hayashi, M., Bentley, L. R., and Christensen, B. S.:
Geophysical imaging and thermal modeling of subsurface morphology and thaw
evolution of discontinuous permafrost, J. Geophys. Res.-Earth Surf.,
118, 1826–1837, 2013.
Messan, K. S., Jones, R. M., Doherty, S. J., Foley, K., Douglas, T. A., and
Barbato, R. A.: The role of changing temperature in microbial metabolic
processes during permafrost thaw, PloS one, 15, e0232169, https://doi.org/10.1371/journal.pone.0232169, 2020.
Minsley, B. J., Wellman, T. P., Walvoord, M. A., and Revil, A.: Sensitivity of airborne geophysical data to sublacustrine and near-surface permafrost thaw, The Cryosphere, 9, 781–794, https://doi.org/10.5194/tc-9-781-2015, 2015.
Minsley, B. J., Pastick, N. J., Wylie, B. K., Brown, D. R., and Kass, M. A.:
Evidence for nonuniform permafrost degradation after fire in boreal
landscapes, J. Geophys. Res.-Earth Surf., 121, 320–335, 2016.
Myers-Smith, I. H., Harden, J. W., Wilmking, M., Fuller, C. C., McGuire, A. D., and Chapin III, F. S.: Wetland succession in a permafrost collapse: interactions between fire and thermokarst, Biogeosciences, 5, 1273–1286, https://doi.org/10.5194/bg-5-1273-2008, 2008.
Neumann, R. B., Moorberg, C. J., Lundquist, J. D., Turner, J. C., Waldrop,
M. P., McFarland, J. W., Euskirchen, E. S., Edgar, C. W., and Turetsky, M.
R.: Warming effects of spring rainfall increase methane emissions from
thawing permafrost, Geophysi. Res. Lett., 46, 1393–1401, 2019.
Nicholas, J. R. and Hinkel, K. M.: Concurrent permafrost aggradation and
degradation induced by forest clearing, central Alaska, USA, Arctic, Ant.,
Alp. Res., 28, 294–299, 1996.
Nossov, D. R., Jorgenson, M. T., Kielland, K., and Kanevskiy, M. Z.: Edaphic and
microclimatic controls over permafrost response to fire in interior Alaska,
Environ. Res. Lett., 8, 035013, https://doi.org/10.1088/1748-9326/8/3/035013, 2013.
Osterkamp, T. and Romanovsky, V.: Evidence for warming and thawing of
discontinuous permafrost in Alaska, Permafrost Periglac. Process., 10,
17–37, 1999.
Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Nield, S. J., Johnson, K.
D., and Finley, A. O.: Distribution of near-surface permafrost in Alaska:
Estimates of present and future conditions, Remote Sens. Environ., 168,
301–315, 2015.
Phillips, M. R., Burn, C. R., Wolfe, S. A., Morse, P. D., Gaanderse, A. J., O'Neill, H. B., Shugar, D. H., and Gruber, S.: Improving water content description of ice-rich permafrost soils, Proceedings of the 7th Canadian Permafrost Conference Québec City, 68, https://doi.org/10.13140/RG.2.1.4760.1126, 2015.
Racine, C. H. and Walters, J. C.: Groundwater-discharge fens in the Tanana
Lowlands, Interior Alaska, USA, Arctic Alpine Res., 26, 418–426, 1994.
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov,
M. M., Daniëls, F. J., Eidesen, P. B., Ermokhina, K. A., Frost, G. V.,
and Jedrzejek, B.: A raster version of the Circumpolar Arctic Vegetation Map
(CAVM), Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297, 2019.
Rey, D. M., Walvoord, M. A., Minsley, B. J., Ebel, B. A., Voss, C. I., and
Singha, K.: Wildfire initiated talik development exceeds current thaw
projections: Observations and models from Alaska's continuous permafrost
zone, Geophys. Res. Lett., 47, e2020GL087565. https://doi.org/10.1029/2020GL087565, 2020.
Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J.
F., Gryziec, J. D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft,
D. P., and Liu, L.: Permafrost stores a globally significant amount of mercury,
Geophys. Res. Lett., 45, 1463–1471, 2018.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D.,
Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal
variations of active-layer thickness in moisture-controlled landscapes,
Barrow Alaska, J. Geophys. Res., 115, G00I04, https://doi.org/10.1029/2009JG001248,
2010.
Shur, Y. L., Hinkel, K. M., and Nelson, F. E.: The transient layer:
Implications for geocryology and global-change science, Permafrost Periglac.
Process., 16, 5–17, 2005.
Shur, Y. and Jorgenson, M.: Patterns of permafrost formation and degradation
in relation to climate and ecosystems, Permafrost Periglac. Process., 18,
7–19, 2007.
Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing
Arctic lakes, Science, 308, 1429–1429, 2005.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H. W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40, 6165–6170,
2013.
Strauss, J., Laboor, S., and Fedorov, A. N.: Database of ice-rich Yedoma
permafrost (IRYP), PANGAEA, https://doi.org/10.1594/PANGAEA.861733, 2016.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S., Schuur,
E. A., and Shmelev, D.: Deep Yedoma permafrost: A synthesis of depositional
characteristics and carbon vulnerability, Earth Sci. Rev., 172, 75–86, 2017.
Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov,
N., Spencer, R. G., Bulygina, E. B., Eglinton, T. I., and Holmes, R. M.:
Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge
thaw, Environ. Res. Lett., 8, 035023, https://doi.org/10.1088/1748-9326/8/3/035023, 2013.
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H., Ahlquist, L.
E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V.,
Carroll, A. B., and Epstein, H. E.: Plant community responses to experimental
warming across the tundra biome, P. Natl. Acad. Sci. USA, 103,
1342–1346, 2006.
Way, R. G., Lewkowicz, A. G., and Zhang, Y.: Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada, The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, 2018.
Wendler, G. and Shulski, M.: A century of climate change for Fairbanks,
Alaska, Arctic, 62, 295–300, 2009.
Wilhelm, R. C., Niederberger, T. D., Greer, C., and Whyte, L. G.: Microbial
diversity of active layer and permafrost in an acidic wetland from the
Canadian High Arctic, Can. J., Microbiol., 57, 303–315, 2011.
Wolken, J. M., Hollingsworth, T. N., Rupp, T. S., Chapin III, F. S.,
Trainor, S. F., Barrett, T. M., Sullivan, P. F., McGuire, A. D., Euskirchen,
E. S., Hennon, P. E., and Beever, E. A.: Evidence and implications of
recent and projected climate change in Alaska's forest ecosystems,
Ecosphere, 2, 1–35, 2011.
Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U., Zona, D., and Oechel, W. C.: Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska, The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, 2018.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater
dynamics in discontinuous permafrost near Council, Alaska, Permafrost
Periglac. Proc., 14, 151–160, 2003.
Yoshikawa, K., Leuschen, C., Ikeda, A., Harada, K., Gogineni, P., Hoekstra,
P., Hinzman, L., Sawada, Y., and Matsuoka, N.: Comparison of geophysical
investigations for detection of massive ground ice (pingo ice), J. Geophys.
Res.-Planets, 111, E06S19, https://doi.org/10.1029/2005JE002573, 2006.
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Permafrost is actively degrading across high latitudes due to climate warming. We combined...