Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3459-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3459-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Energetics of surface melt in West Antarctica
Madison L. Ghiz
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0206, USA
Ryan C. Scott
Science Systems and Applications, Inc., Hampton, VA 23666, USA
Andrew M. Vogelmann
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
Jan T. M. Lenaerts
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80309-0311, USA
Matthew Lazzara
Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI 53706, USA
Madison Area Technical College, Madison, WI 53704, USA
Dan Lubin
CORRESPONDING AUTHOR
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0206, USA
Related authors
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Dan Lubin, Xun Zou, Johannes Mülmenstädt, Andrew Vogelmann, Maria Cadeddu, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2768, https://doi.org/10.5194/egusphere-2025-2768, 2025
Short summary
Short summary
The US Department of Energy Atmospheric Radiation Measurement (ARM) North Slope of Alaska Facility has measured solar and atmospheric infrared radiation, and cloud properties, for the past 25 years. Statistically significant trends are emerging, including increasing infrared radiation due to a warming atmosphere, and decreasing solar radiation due to increasing liquid water content in clouds. These trends are influenced by large-scale atmospheric circulation patterns and by atmospheric rivers.
Andrew O. Hoffman, Michelle L. Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Christianson
The Cryosphere, 19, 713–730, https://doi.org/10.5194/tc-19-713-2025, https://doi.org/10.5194/tc-19-713-2025, 2025
Short summary
Short summary
Traditionally, glaciologists use global navigation satellite systems (GNSSs) to measure the surface elevation and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change near GNSS receivers in the Amundsen Sea Embayment (ASE). From surface height change, we infer daily accumulation rates that we use to understand the drivers of extreme precipitation in the ASE.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Jeramy L. Dedrick, Georges Saliba, Abigail S. Williams, Lynn M. Russell, and Dan Lubin
Atmos. Meas. Tech., 15, 4171–4194, https://doi.org/10.5194/amt-15-4171-2022, https://doi.org/10.5194/amt-15-4171-2022, 2022
Short summary
Short summary
A new method is presented to retrieve the sea spray aerosol size distribution by combining submicron size and nephelometer scattering based on Mie theory. Using available sea spray tracers, we find that this approach serves as a comparable substitute to supermicron size distribution measurements, which are limited in availability at marine sites. Application of this technique can expand sea spray observations and improve the characterization of marine aerosol impacts on clouds and climate.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
Tessa Gorte, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020, https://doi.org/10.5194/tc-14-4719-2020, 2020
Short summary
Short summary
In this paper, we analyze several spatial and temporal criteria to assess the ability of models in the CMIP5 and CMIP6 frameworks to recreate past Antarctic surface mass balance. We then compared a subset of the top performing models to all remaining models to refine future surface mass balance predictions under different forcing scenarios. We found that the top performing models predict lower surface mass balance by 2100, indicating less buffering than otherwise expected of sea level rise.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves,
Nat. Geosci.,
13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020.
Alley, R. B., Anandakrishnan, S., Christianson, K., Horgan, H. J., Muto, A., Parizek, B. R., Pollard, D., and Walker, R. T.:
Oceanic forcing of ice-sheet retreat: West Antarctica and more,
Annu. Rev. Earth Pl. Sc.,
43, 207–231, https://doi.org/10.1146/annurev-earth-060614-105344, 2015.
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa, C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.:
Antarctic ice shelf potentially stabilized by export of meltwater in surface river,
Nature,
544, 344–351, https://doi.org/10.1038/nature22048, 2017.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.:
Antarctic surface hydrology and impacts on ice-sheet mass balance,
Nat. Clim. Change,
8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.:
July 2012 Greenland melt extent enhanced by low-level liquid clouds,
Nature,
496, 83–86, https://doi.org/10.1038/nature12002, 2013.
Brodzik, M. J., Long, D. G., Hardman, M. A., Paget, A., and Armstrong, R.:
MEsSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1,
National Snow and Ice Data Center Distributed Active Archive Center [data set], Boulder, Colorado, USA, https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001, 2016, Updated 2020.
Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I. V., Grosvenor, D. P., Lachlan-Cope, T., and van Lipzig, N. P. M.:
Tropospheric clouds in Antarctica,
Rev. Geophys.,
50, RG1004, https://doi.org/10.1029/2011RG000363, 2012.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.:
Central West Antarctica among the most rapidly warming regions on Earth,
Nat. Geosci.,
6, 139–145, https://doi.org/10.1038/NGEO2016, 2013.
Chylek, P., Robinson, S., Dubey, M. K., King, M. D., Fu, Q., and Clodius, W. B.:
Comparison of near-infrared and thermal infrared cloud phase detections,
J. Geophys. Res.,
111, D20203, https://doi.org/10.1029/2006JD007140, 2006.
Clem, K. R., Renwick, J. A., and McGregor, J.:
Large-scale forcing of the Amundsen Sea Low and its influence on sea ice and West Antarctic temperature,
J. Climate,
30, 8405–8423, https://doi.org/10.1175/JCLI-D-16-0891.1, 2017.
Das, S. B. and Alley, R. B.:
Characterization and formation of melt layers in polar snow: Observations and experiments from West Antarctica,
J. Glaciol.,
51, 307–312, https://doi.org/10.3189/172756505781829395,2005.
Das, S. B. and Alley, R. B.:
Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica,
J. Geophys. Res.,
113, D02112, https://doi.org/10.1029/2007JD008790, 2008.
Datta, R. T., Tedesco, M., Fettweis, X., Agosta, C., Lhermite, S., Lenaerts, J. T. M., and Wever, N.:
The effect of Foehn-induced surface melt on firn evolution over the northeast Antarctic Peninsula,
Geophys. Res. Lett.,
46, 3822–3831, https://doi.org/10.1029/2018GL080845, 2019.
Deb, P., Orr, A., Bromwich, D. H., Nicolas, J. P., Turner, J., and Hosking, J. S.:
Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica,
Geophys. Res. Lett.,
45, 4124–4133, https://doi.org/10.1029/2018GL077092, 2018.
DeConto, R. M. and Pollard, D.:
Contribution of Antarctica to past and future sea-level rise,
Nature,
531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dee, D., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geers, A. J., Haimberger, L., Healy S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Donat-Magnin, M., Jourdain, N. C., Gallée, H., Amory, C., Kittel, C., Fettweis, X., Wille, J. D., Favier, V., Drira, A., and Agosta, C.: Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica, The Cryosphere, 14, 229–249, https://doi.org/10.5194/tc-14-229-2020, 2020.
Dreschel, S. and Mayr, G. J.:
Objective forecasting of foehn winds for a subgrid-scale alpine valley,
Weather Forecast.,
23, 205–218, https://doi.org/10.1175/2007WAF2006021.1, 2008.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schär, C. and Elder, K.:
An improved snow scheme for the ECMWF Land Surface Model: Description and offline validation,
J. Hydrometeorol.,
11, 899–915, https://doi.org/10.1175/2010JHM1249.1, 2010.
Elvidge, A. D. and Renfrew, I. A.:
The Causes of Foehn Warming in the Lee of Mountains,
B. Am. Meteorol. Soc.,
97, 455–466, https://doi.org/10.1175/BAMS-D-14-00194.1, 2016.
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A., Lachlan-Cope, T. A., Weeks, M., and Gray, S. L.:
Foehn jets over the Larsen C Ice Shelf, Antarctica,
Q. J. Roy. Meteor. Soc.,
141, 698–713, https://doi.org/10.1002/qj2382, 2015.
Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A., and Gilbert, E:
Atmospheric drivers of melt on Larsen C Ice Shelf: Surface energy budget regimes and the impact of foehn,
J. Geophys. Res.,
125, e2020JD032463, https://doi.org/10.1029/2020JD032463, 2020.
Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., and Foley, N.:
High geothermal heat flux measured below the West Antarctic Ice Sheet,
Science Advvances,
1, e1500093, https://doi.org/10.1126/sciadv.1500093, 2015.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L. Ranki, M., Braun, M., and Gagliardini, O.:
The safety band of Antarctic ice shelves,
Nat. Clim. Change,
6, 479–482, https://doi.org/10.1038/NCLIMATE2912, 2016.
Gilbert, E., Orr, A., King, J. C., Renfrew, I. A., Lachlan-Cope, T., Field, P. F., and Boutle, I. A.:
Summertime cloud phase strongly influences surface melting on the Larsen C Ice Shelf, Antarctica,
Q. J. Roy. Meteor. Soc.,
146, 1575–1589, https://doi.org/10.1002/qj.3753, 2020.
Glasser, N. F. and Scambos, T. A.:
A structural glaciological analysis of the 2002 Larsen B ice shelf collapse,
J. Glaciol.,
54, 3–16, 2008.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.:
MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, West Antarctica,
National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5ZK5DM5, 2014.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L. Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Vamborg, C., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hines, K. M., Bromwich, D. H., Wang, S.-H., Silber, I., Verlinde, J., and Lubin, D.: Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS), Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019, 2019.
Joughin, I., Smith, B. E., and Medley, B.:
Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica,
Science,
344, 735–738, 2014.
Khanal, S. and Wang, Z.:
Uncertainties in MODIS-based cloud liquid water path retrievals at high latitudes due to mixed-phase clouds and cloud top height inhomogeneity,
J. Geophys. Res.,
123, 11154–11172, https://doi.org/10.1029/2018JD028558, 2018.
King, J. C., Kirchgaessner, A., Bevan, S., Elvidge, A. D., Kuipers Munneke, P., Luckman, A., Orr, A., Renfrew, I. A., and van den Broeke, M. R.: The impact of fohn winds on surface energy balance during the 2010–2011 melt season over Larsen C Ice Shelf, Antarctica, J. Geophys. Res., 122, 12062–12076, https://doi.org/10.1002/2017JD026809, 2017.
Kingslake, J., Ely, J. C., Das, I., and Bell, R.:
Widespread movement of meltwater onto and across Antarctic ice shelves,
Nature,
544, 349–352, https://doi.org/10.1038/nature22049, 2017.
Kuipers Munneke, P., Picard, G., van den Broeke, M. R., Lenaerts, J. T. M., and van Meijgaard, E.:
Insignificant change in Antarctic snowmelt volume since 1979,
Geophys. Res. Lett.,
39, L01501, https://doi.org/10.1029/2011GL050207, 2012a.
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012, 2012b.
Kuipers Munneke, P., Luckman, A. J., Bevan, S. L., Smeets, C. J. P. P., Gilbert, E., van den Broeke, M. R., Wang, W., Zender, C., Hubbard, B., Ashmore, D., Orr, A., King, J. C., and Kulessa, B.:
Intense winter surface melt on an Antarctic ice shelf,
Geophys. Res. Lett.,
45, 7615–7623, https://doi.org/10.1029/2018GL077899, 2018.
Lazzara, M. A., Weidner, G. A., Keller, L. M., Thom, J. E., and Cassano, J. J.:
Antarctic automatic weather station program: 30 years of polar observations,
B. Am. Meteorol. Soc.,
93, 1519–1537, https://doi.org/10.1175/BAMS-D-11-00015.1, 2012 (data available at: https://amrc.ssec.wisc.edu/data, last access: 30 April 2021).
Lenaerts, J. T. M., Van Tricht, K., Lhermite, S., and L'Ecuyer, T. S.:
Polar clouds and radiation in satellite observations, reanalyses, and climate models,
Geophys. Res. Lett.,
44, 3355–3364, https://doi.org/10.1002/2016GL072242, 2017.
Lenaerts, J. T. M., Ligtenberg, S. R. M., Medley, B., Van De Berg, J. J., Konrad, H., Nicolas, J. P., Van Wessem, J. M., Trusel, L. D., Mulvaney, R., Tuckwell, R. J., Hogg, A. E., and Thomas, E. R.:
Climate and surface mass balance of coastal West Antarctica resolved by regional climate modeling,
Ann. Glaciol.,
59, 29–41, https://doi.org/10.1017/aog.2017.42, 2018.
Lhermitte, S., Sun, S., Shuman, C., Wouters, B. Pattyn, F., Wuite, J., Berthier, E., and Nagler, T:
Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment,
P. Natl. Acad. Sci. USA,
117, 24735–24741, https://doi.org/10.1073/pnas.1912890117, 2020.
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A., Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H., Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and Vogelmann, A. M.:
AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment,
B. Am. Meteorol. Soc.,
101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020.
Mather, J. H. and Voyles, J. W.:
The ARM Climate Research Facility: A review of structure and capabilities,
B. Am. Meteorol. Soc.,
94, 377–392, https://doi.org/10.1175/BAMS-D-11-00218.1, 2013.
Mätzler, C.:
Applications of the interaction of microwaves with the natural snow cover,
Remote Sensing Reviews,
2, 259–387, https://doi.org/10.1080/02757258709532086, 1987.
Mouginot, J., Rignot, E., Bjork, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.:
Forty-six years of Greenland Ice Sheet mass balance from 1972–2018,
P. Natl. Acad. Sci. USA,
116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols 1-Hourly Terra-Aqua Edition4A, NASA Atmospheric Science Data Center [data set], https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A, 2017.
Nicolas, J. P and Bromwich, D. H.:
Climate of West Antarctica and influence of marine air intrusions,
J. Climate,
24, 49–67, https://doi.org/10.1175/2010JCLI3522.1, 2011.
Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D.:
January 2016 extensive summer melt in West Antarctica favoured by strong El Niño,
Nat. Commun.,
8, 15799, https://doi.org/10.1038/ncomms15799, 2017.
Oppenheimer, M.:
Global warming and the stability of the West Antarctic Ice Sheet,
Nature,
393, 325–332, 1998.
Paolo, F. S., Fricker, H. A., and Padman, L.:
Volume loss from Antarctic ice shelves is accelerating,
Science,
348, 327–330, https://doi.org/10.1126/science.aaa0940, 2015.
Platnick, S., Pincus, R., Wind, B., King, M. D., Gray, M., and Hubanks, P.:
An initial analysis of the pixel-level uncertainties in global MODIS cloud optical thickness and effective particle size retrievals,
Proc. SPIE 5652, Passive Optical Remote Sensing of the Atmosphere and Clouds IV, https://doi.org/10.1117/12.578353, 2004.
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., and Riedi, J.::
The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua,
IEEE T. Geosci. Remote,
55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L.:
Antarctic ice-sheet loss driven by basal melting of ice shelves,
Nature,
484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem M.:
Four decades of Antarctic ice sheet mass balance from 1979-2017,
P. Natl. Acad. Sci. USA,
116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell, T. E., and Loeb N. G.:
CERES Synoptic Product: Methodology and validation of surface radiant flux,
J. Atmos. Ocean. Tech.,
32, 1121–1143, https://doi.org/10.1175/JTECH-D-14-00165.1, 2015.
Scambos, T. A., Hulbe, C., and Fahnestock, M.:
Climate-induced ice shelf disintegration in the Antarctic Peninsula,
AGU Antarct. Res. Ser.,
79, 79–92, 2003.
Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.:
Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica,
Geophys. Res. Lett.,
31, L18402, https://doi.org/10.1029/2004GL020670, 2004.
Scambos, T. A., Haran, T., Fahnestock, M., Painter, T., and Bohlander, J.:
MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size,
Rem. Sens. Environ.,
111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Scambos, T. A., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A.-M.:
Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups,
Earth Planet. Sc. Lett.,
280, 51–60, 2009.
Scott, R. C. and Lubin, D.:
Mixed-phase cloud radiative properties over Ross Island: The influence of various synoptic-scale circulation regimes,
J. Geophys. Res.,
119, 6702–6723, https://doi.org/10.1002/2013JD021132, 2014.
Scott, R. C. and Lubin, D.:
Unique manifestations of mixed-phase cloud properties over Ross Island and the Ross Ice Shelf, Antarctica,
Geophys. Res. Lett.,
43, 2936–2945, https://doi.org/10.1002/2015GL067246, 2016.
Scott, R. C., Lubin, D., Vogelmann, A. M., and Kato, S.:
West Antarctic Ice Sheet clouds and radiation budget from NASA A-Train satellites,
J. Climate,
30, 6151–6170, https://doi.org/10.1175/JCLI-D-16-0644.1, 2017.
Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lubin, D.:
Meteorological drivers and large-scale climate forcing of West Antarctic surface melt,
J. Climate,
32, 665–684, https://doi.org/10.1175/JCLI-D-18-0233.1, 2019.
Silber, I., Verlinde, J., Wang, S.-H., Bromwich, D. H., Fridlind, A. M., Cadeddu, M., Eloranta, E. W., and Flynn, C. J.:
Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica,
J. Climate,
32, 7935–7949, https://doi.org/10.1175/JCLI-D-19-0149.1, 2019.
Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T.:
Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year,
Nature,
457, 459–462, https://doi.org/10.1038/nature07669, 2009.
Suzuki, K., Yamanouchi, T., Kawamura, K., and Motoyama, H.:
The spatial and seasonal distributions of air-transport origins to the Antarctic based on 5-day backward trajectory analysis,
Polar Sci.,
7, 205–213, https://doi.org/10.1016j.polar.2013.08.001, 2013.
Tedesco, M.:
Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008),
Rem. Sens. Environ.,
113, 979–997, 2009.
Tompkins, A. M., Gierens, K., and Rädel, G.:
Ice supersaturation in the ECMWF integrated forecast system,
Q. J. Roy. Meteor. Soc.,
133, 53–63, https://doi.org/10.1002/qj.14, 2007.
Torinesi, O., Fily, M., and Genthon, C.:
Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors,
J. Climate,
16, 1047–1060, 2003.
Trusel, L. D., Frey, K. E., Das, S. B., Kuipers Munneke, P., and van den Broeke, M. R.:
Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett.,
40, 6148–6153, https://doi.org/10.1002/2013GL058138, 2013.
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.:
The Amundsen Sea low,
Int. J. Climatol.,
33, 1818–1829, https://doi.org/10.1002/joc.3558, 2013.
van As, D., van den Broeke, M., Reijmer, C., and van de Wal, R.:
The summer surface energy balance of the high Antarctic Plateau,
Bound.-Lay. Meteorol.,
115, 289–317, https://doi.org/10.1007/s10546-004-4631-1, 2005.
van den Broeke, M.:
Strong surface melting preceded collapse of Antarctic Peninsula ice shelf,
Geophys. Res. Lett.,
32, L12815, https://doi.org/10.1029/2005GL023247, 2005.
Van Tricht, K., Lhermite, S., Lenaerts, J. T. M., Gorodetskaya, I. V., L'Ecuyer, T. S., Noël, B., van den Broeke, M. R., Turner, D. D., and van Lipzig, N. P. M.:
Clouds enhance Greenland Ice Sheet meltwater runoff,
Nat. Commun.,
7, 10266, https://doi.org/10.1038/ncomms10266, 2016.
van Wessem, J. M., Reijmer, C. H., Lenaerts, J. T. M., van de Berg, W. J., van den Broeke, M. R., and van Meijgaard, E.: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica, The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, 2014.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Weertman, J.:
Stability of the junction of an ice sheet and an ice shelf,
J. Glaciol.,
13, 3–11, 1974.
Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., and Codron, F.:
West Antarctic surface melt triggered by atmospheric rivers,
Nat. Geosci.,
12, 911–916, https://doi.org/10.1038/s41561-019-0460-1, 2019.
Wilson, A., Scott, R. C., Cadeddu, M. P., Ghate, V., and Lubin, D.: Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE, J. Geophys. Res., 123, 9559–9570, https://doi.org/10.1029/2018JD028347, 2018.
Wilson, A., Scott, R. C., Cadeddu, M. P., Ghate, V., and Lubin, D:
Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE,
J. Geophys. Res.,
123, 9559–9570, https://doi.org/10.1029/2018JD028347, 2018.
Zhang, D. and Long, C.: Data quality assessment for ARM Radiation Data (QCRAD1LONG), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1027372, 2015.
Zou, X., Bromwich, D. H., Nicolas, J. P., Montenegro, A., and Wang, S.-H.:
West Antarctic surface melt event of January 2016 facilitated by föhn warming,
Q. J. Roy. Meteor. Soc.,
145, 687–704, https://doi.org/10.1002/qj3460, 2018.
Zwally, H. J. and Feigles, S.:
Extent and duration of Antarctic surface melting,
J. Glaciol.,
40, 463–476, 1994.
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine...