Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2957-2021
https://doi.org/10.5194/tc-15-2957-2021
Research article
 | 
28 Jun 2021
Research article |  | 28 Jun 2021

The flexural strength of bonded ice

Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw

Related authors

Behavior of saline ice under cyclic flexural loading
Andrii Murdza, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2415–2428, https://doi.org/10.5194/tc-15-2415-2021,https://doi.org/10.5194/tc-15-2415-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Jari Haapala, and Arttu Polojärvi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-97,https://doi.org/10.5194/tc-2023-97, 2023
Revised manuscript accepted for TC
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary

Cited articles

Ardhuin, F., Otero, M., Merrifield, S., Grouazel, A., and Terrill, E.: Ice Breakup Controls Dissipation of Wind Waves Across Southern Ocean Sea Ice, Geophys. Res. Lett., 47, e2020GL087699, https://doi.org/10.1029/2020GL087699, 2020. 
Ashby, M. M. and Jones, D. R. H.: Engineering Materials 1: An Introduction to Properties, Applications and Design, 4th Edn., Elsevier/Butterworth-Heinemann, Oxford, UK, 2012. 
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res.-Ocean., 117, 1–12, https://doi.org/10.1029/2011JC007221, 2012. 
Bailey, E., Sammonds, P. R., and Feltham, D. L.: The consolidation and bond strength of rafted sea ice, Cold Reg. Sci. Technol., 83–84, 37–48, https://doi.org/10.1016/j.coldregions.2012.06.002, 2012. 
Boroojerdi, M. T., Bailey, E., and Taylor, R.: Experimental investigation of rate dependency of freeze bond strength, Cold Reg. Sci. Technol., 178, 1–12, https://doi.org/10.1016/j.coldregions.2020.103120, 2020a. 
Download
Short summary
The strength of refrozen floes or piles of ice rubble is an important factor in assessing ice-structure interactions, as well as the integrity of an ice cover itself. The results of this paper provide unique data on the tensile strength of freeze bonds and are the first measurements to be reported. The provided information can lead to a better understanding of the behavior of refrozen ice floes and better estimates of the strength of an ice rubble pile.