Articles | Volume 14, issue 3
https://doi.org/10.5194/tc-14-811-2020
https://doi.org/10.5194/tc-14-811-2020
Research article
 | Highlight paper
 | 
05 Mar 2020
Research article | Highlight paper |  | 05 Mar 2020

Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter

Fabien Gillet-Chaulet

Related authors

The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2649,https://doi.org/10.5194/egusphere-2024-2649, 2024
Short summary
Uncertainty in the projected Antarctic contribution to sea level due to internal climate variability
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Christoph Kittel, and Mondher Chekki
EGUsphere, https://doi.org/10.5194/egusphere-2024-128,https://doi.org/10.5194/egusphere-2024-128, 2024
Short summary
The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023,https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023,https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Data Assimilation
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023,https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023,https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary
DeepBedMap: a deep neural network for resolving the bed topography of Antarctica
Wei Ji Leong and Huw Joseph Horgan
The Cryosphere, 14, 3687–3705, https://doi.org/10.5194/tc-14-3687-2020,https://doi.org/10.5194/tc-14-3687-2020, 2020
Short summary

Cited articles

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation: Ensemble-variational Data Assimilation, Q. J. Roy. Meteorol. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017. a, b, c
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a, b
Bonan, B., Nodet, M., Ritz, C., and Peyaud, V.: An ETKF approach for initial state and parameter estimation in ice sheet modelling, Nonlin. Processes Geophys., 21, 569–582, https://doi.org/10.5194/npg-21-569-2014, 2014. a, b, c, d, e, f, g, h, i, j, k
Bonan, B., Nichols, N. K., Baines, M. J., and Partridge, D.: Data assimilation for moving mesh methods with an application to ice sheet modelling, Nonlin. Processes Geophys., 24, 515–534, https://doi.org/10.5194/npg-24-515-2017, 2017. a, b
Download
Short summary
Marine-based sectors of the Antarctic Ice Sheet are increasingly contributing to sea-level rise. The basal conditions exert an important control on the ice dynamics. For obvious reasons of inaccessibility, they are an important source of uncertainties in numerical ice flow models used for sea-level projections. Here we assess the performance of an ensemble Kalman filter for the assimilation of transient observations of surface elevation and velocities in a marine ice sheet model.