Articles | Volume 14, issue 12
The Cryosphere, 14, 4279–4297, 2020
https://doi.org/10.5194/tc-14-4279-2020
The Cryosphere, 14, 4279–4297, 2020
https://doi.org/10.5194/tc-14-4279-2020
Research article
 | Highlight paper
01 Dec 2020
Research article  | Highlight paper | 01 Dec 2020

The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future

Ingmar Nitze et al.

Related authors

Late Pleistocene to Holocene climate and limnological changes at Lake Karakul (Pamir Mountains, Tajikistan)
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34,https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022,https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022,https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022,https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021,https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021,https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary

Cited articles

Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska, Environ. Res. Lett., 11, 074022, https://doi.org/10.1088/1748-9326/11/7/074022, 2016. 
Antonova, S., Duguay, C., Kääb, A., Heim, B., Langer, M., Westermann, S., and Boike, J.: Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series, Remote Sens., 8, 903, https://doi.org/10.3390/rs8110903, 2016. 
Arp, C. D. and Jones, B. M.: Geography of Alaska Lake Districts: Identification, description, and analysis of lake-rich regions of a diverse and dynamic state, U.S. Geological Survey Scientific Investigations Report 2008-5215, 40 pp., 2009. 
Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky, V. E., Hinkel, K. M., and Parsekian, A. D.: Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate, Geophys. Res. Lett., 43, 6358–6365, https://doi.org/10.1002/2016gl068506, 2016. 
Arp, C. D., Jones, B. M., Engram, M., Alexeev, V. A., Cai, L., Parsekian, A., Hinkel, K., Bondurant, A. C., and Creighton, A.: Contrasting lake ice responses to winter climate indicate future variability and trends on the Alaskan Arctic Coastal Plain. Environ. Res. Lett., 13, 125001, https://doi.org/10.1088/1748-9326/aae994, 2018. 
Download
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.