Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4145-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Proglacial icings as records of winter hydrological processes
Hydrology, Climate and Climate Change Laboratory, École de
technologie supérieure, Montréal, H3C 1K3, Canada
Geography Program, University of Northern British Columbia, Prince
George, V2N 4Z9, Canada
Michel Baraër
Hydrology, Climate and Climate Change Laboratory, École de
technologie supérieure, Montréal, H3C 1K3, Canada
Émilie Bouchard
Hydrology, Climate and Climate Change Laboratory, École de
technologie supérieure, Montréal, H3C 1K3, Canada
Related authors
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023, https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Cited articles
Åkerman, J.: Studies on naledi (icings) in West Spitsbergen, Fourth Can.
Permafr. Conf., 189–202, 1982.
Alekseyev, V. R.: Naledi, Nauka, Moscow, 1987.
Alekseyev, V. R.: Cryogenesis and geodynamics of icing valleys, Geodyn.
Tectonophys., 6, 171–224, https://doi.org/10.5800/GT-2015-6-2-0177, 2015.
Arendt, A. A, Echelmeyer, K. a, Harrison, W. D., Lingle, C. S., and
Valentine, V. B.: Rapid wastage of Alaska glaciers and their contribution to
rising sea level, Science, 297, 382–6, https://doi.org/10.1126/science.1072497,
2002.
Bælum, K. and Benn, D. I.: Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar, The Cryosphere, 5, 139–149, https://doi.org/10.5194/tc-5-139-2011, 2011.
Baraer, M., Mckenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T.,
Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the
outflow from ungauged glacierized catchments: A multi-site study in the
tropical Cordillera Blanca, Peru, Hydrol. Process., 29, 2561–2581,
https://doi.org/10.1002/hyp.10386, 2015.
Barrand, N. E. and Sharp, M. J.: Sustained rapid shrinkage of Yukon glaciers
since the 1957–1958 International Geophysical Year, Geophys. Res. Lett.,
37, L07501, https://doi.org/10.1029/2009GL042030, 2010.
Beylich, A. A. and Laute, K.: Seasonal and annual variations of surface
water chemistry, solute fl uxes and chemical denudation in a steep and
glacier-fed mountain catchment in western Norway (Erdalen, Nordfjord),
Catena, 96, 12–27, https://doi.org/10.1016/j.catena.2012.04.004, 2012.
Bonnaventure, P. P. and Lewkowicz, A. G.: Mountain permafrost probability
mapping using the BTS method in two climatically dissimilar locations,
northwest Canada, Can. J. Earth Sci., 45, 443–455, https://doi.org/10.1139/E08-013,
2008.
Brabets, T. P. and Walvoord, M. A.: Trends in streamflow in the Yukon River
Basin from 1944 to 2005 and the influence of the Pacific Decadal
Oscillation, J. Hydrol., 371, 108–119,
https://doi.org/10.1016/j.jhydrol.2009.03.018, 2009.
Brown, J., Ferrians, O., Heginbottom, J., and Melnikov, E.: Circum-Arctic Map
of Permafrost and Gound-Ice Conditions, version 2, Natl. Snow Ice Data
Cent., Boulder, CO, 2002.
Bukowska-jania, E. and Szafraniec, J.: Distribution and morphometric
characteristics of icing fields in Svalbard, Polar Res., 24, 41–53, 2005.
Bukowska-Jania, E.: The role of glacier system in migration of calcium
carbonate on Svalbard, Polish Polar Res., 28, 137–155, 2007.
Carey, K. L.: Icings developed from surface water and ground water, 1973.
Carey, S. K.: Dissolved organic carbon fluxes in a discontinuous permafrost
subarctic alpine catchment, Permafr. Periglac. Process., 14, 161–171,
https://doi.org/10.1002/ppp.444, 2003.
Chesnokova, A., Baraër, M., Laperrière-Robillard, T., and Huh, K.:
Linking Mountain Glacier Retreat and Hydrological Changes in Southwestern
Yukon, Water Resour. Res., 56, 1–26, https://doi.org/10.1029/2019WR025706, 2020.
Clarke, G. K. C., Schmok, J. P., Simon, C., Ommanney, L., and Collins, S. G.:
Characteristics of Surge-Type Glaciers, J. Geophys. Res., 91, 7165–7180,
1986.
Connon, R., Devoie, É., Hayashi, M., Veness, T., and Quinton, W. L.: The
Influence of Shallow Taliks on Permafrost Thaw and Active Layer Dynamics in
Subarctic Canada, J. Geophys. Res.-Earth Surf., 123, 281–297,
https://doi.org/10.1002/2017JF004469, 2018.
Cooper, R., Hodgkins, R., Wadham, J., and Tranter, M.: The hydrology of the
proglacial zone of a high-Arctic glacier(Finsterwalderbreen, Svalbard):
Sub-surface water fluxes and complete water budget, J. Hydrol., 406,
88–96, https://doi.org/10.1016/j.jhydrol.2011.06.008, 2011.
Coplen, T. B.: New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data, Geochim. Cosmochim. Acta, 60, 3359–3360, 1996.
Crites, H., Kokelj, S. V., and Lacelle, D.: Icings and groundwater conditions
in permafrost catchments of northwestern Canada, Sci. Rep., 10, 1–11,
https://doi.org/10.1038/s41598-020-60322-w, 2020.
Danilovich, I., Zhuravlev, S., Kurochkina, L., and Groisman, P.: The Past and Future Estimates of Climate and Streamflow Changes in the Western Dvina River Basin, Front. Earth Sci., 7, 1–16, https://doi.org/10.3389/feart.2019.00204, 2019.
Drever, J. I.: The Geochemistry of Natural Waters: Surface and Groundwater
Environments, 3rd edn., Prentice Hall, New jersey, USA, 1997.
Ensom, T., Makarieva, O., Morse, P., Kane, D. Alekseev, V., and Marsh, P.:
The distribution and dynamics of aufeis in permafrost regions, Permafr.
Periglac. Process., 31, 383–395, https://doi.org/10.1002/ppp.2051, 2020.
Flowers, G. E., Copland, L., and Schoof, C. G.: Contemporary Glacier
Processes and Global Change: Recent Observations from Kaskawulsh Glacier and
the Donjek Range, St. Elias Mountains, ARCTIC, 1–13, available
at:
http://arctic.synergiesprairies.ca/arctic/index.php/arctic/article/view/4356
(last access: 30 October 2014), 2014.
French, H. M. and Heginbottom, J. A.: Guidebook to permafrost and related
features of the Northern Yukon territory and Mackenzie Delta, Canada, Fourth
Int. Conf. Permafr., 194 pp., 1983.
Ge, S., McKenzie, J., Voss, C., and Wu, Q.: Exchange of groundwater and
surface-water mediated by permafrost response to seasonal and long term air
temperature variation, Geophys. Res. Lett., 38, L14402,
https://doi.org/10.1029/2011GL047911, 2011.
Gokhman, V. V.: Distribution and conditions of formation of glacial icings
on spitsbergen, Polar Geogr. Geol., 11, 249–260,
https://doi.org/10.1080/10889378709377334, 1987.
Hagedorn, F., Saurer, M., and Blaser, P.: A 13C tracer study to identify the
origin of dissolved organic carbon in forested mineral soils, Eur. J. Soil
Sci., 55, 91–100, https://doi.org/10.1046/j.1365-2389.2003.00578.x, 2004.
Hambrey, M. J.: Sedimentary processes and buried ice phenomena in the
pro-glacial areas of Spitsbergen glaciers, J. Glaciol., 30, 116–119,
https://doi.org/10.1017/S002214300000856X, 1984.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M.
B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H.
P., Jensen, A. M., Gensuo, J. J., Jorgenson, T., Kane, D. L., Klein, D.
R., Kofinas, G., Lynch, A. H., Lloyd, A. H., Mcguire, a D., Nelson, F. E.,
Oechel, W. C., Racine, C. H., Romanovsky, V. E., Stone, R. S., Stow, D. a,
Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D., Walker, D. a,
Webber, P. J., Welker, J. M., and Winker, K. S.: Evidence and Implications of
Recent Climate Change in Northern Alaska and Other Arctic Regions, Clim.
Change, 72, 251–298, https://doi.org/10.1007/s10584-005-5352-2, 2005.
Hodgkins, R., Tranter, M., and Dowdeswell, J. A.: The hydrochemistry of
runoff from a “cold-based” glacier in the High Artic (Scott Turnerbreen,
Svalbard), Hydrol. Process., 12, 87–103,
https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<87::AID-HYP565>3.0.CO;2-C, 1998.
Hodgkins, R., Tranter, M., and Dowdeswell, J.: The characteristics and
formation of a high-arctic proglacial icing, Geogr. Ann., 86, 265–275,
2004.
Hu, X. and Pollard, W. H.: The hydrologic analysis and modelling of river
icing growth, North Fork Pass, Yukon Territory, Canada, Permafr. Periglac.
Process., 8, 279–294, https://doi.org/10.1002/(SICI)1099-1530(199709)8:3<279::AID-PPP260>3.3.CO;2-Z, 1997.
Johnson, P. G.: Ice Cored Moraine Formation and Degradation, Donjek Glacier,
Yukon Territory, Canada, Geogr. Ann. Ser. A, Phys. Geogr., 53, 198,
https://doi.org/10.2307/520789, 1971.
Johnson, P. G.: Rock glacier types and their drainage systems, Grizzly
Creek, Yukon Territory, Can. J. Earth Sci., 15, 1496–1507,
https://doi.org/10.1139/e78-155, 1978.
Johnson, P. G.: Holocene paleohydrology of the St. Elias Mountains, British
Columbia and Yukon, Geogr. Phys. Quat., 40, 47–53, https://doi.org/10.7202/032622ar,
1986.
Johnson, P. G.: Stagnant glacier ice, St Elias Mountains, Yukon, Geogr. Ann.
Ser. A Phys. Geogr., 74, 13–19, 1992.
Kane, D. L.: Physical mechanics of aufeis growth, Can. J. Civ. Eng., 8,
186–195, https://doi.org/10.1139/l81-026, 1981.
Kane, D. L. and Slaughter, C. W.: Seasonal regime and hydrological significance of stream icings in central Alaska, Role snow ice Hydrol. Proc. Banff Symp., 528–540, available at: http://hydrologie.org/redbooks/a107/107041.pdf (last access: 10 December 2019), 1973.
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested groundwater-flow system, Hydrogeol. J., 21, 299–316, https://doi.org/10.1007/s10040-012-0942-3, 2013.
Kuo, M. H., Moussa, S. G., and McNeill, V. F.: Modeling interfacial liquid layers on environmental ices, Atmos. Chem. Phys., 11, 9971–9982, https://doi.org/10.5194/acp-11-9971-2011, 2011.
Lacelle, D.: On the δ18O, δD and D-excess relations in
meteoric precipitation and during equilibrium freezing: Theoretical approach
and field examples, Permafr. Periglac. Process., 22, 13–25,
https://doi.org/10.1002/ppp.712, 2011.
Lacelle, D., Lauriol, B., and Clark, I. D.: Formation of seasonal ice bodies
and associated cryogenic carbonates in caverne de l'ours, Québec,
Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, J.
Cave Karst Stud., 71, 48–62, 2009.
Lammers, R. B., Shiklomanov, A. I., Vörösmarty, C. J., Fekete, B. M.,
and Peterson, B. J.: Assessment of contemporary Arctic river runoff based on
observational discharge records, J. Geophys. Res.-Atmos., 106,
3321–3334, https://doi.org/10.1029/2000JD900444, 2001.
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L., and Zipper, S. C.:
Changing groundwater discharge dynamics in permafrost regions, Environ. Res.
Lett., 13, 084017, https://doi.org/10.1088/1748-9326/aad404, 2018.
Lauriol, B. and Clark, J.: Localisation, Genèse et Fonte de
Quelques Naleds du Nord du Yukon (Canada), Permafr. Periglac. Process.,
2, 225–236, https://doi.org/10.1002/ppp.3430020306, 1991.
Liljedahl, A., Gaedeke, A., O'Neel, S., Gatesman, T. and Douglas, T.:
Glacierized headwater streams as aquifer recharge corridors, subarctic
Alaska, Geophys. Res. Lett., 44, 6876–6885, https://doi.org/10.1002/2017GL073834, 2016.
Lyon, S. W., Destouni, G., Giesler, R., Humborg, C., Mörth, M., Seibert, J., Karlsson, J., and Troch, P. A.: Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis, Hydrol. Earth Syst. Sci., 13, 595–604, https://doi.org/10.5194/hess-13-595-2009, 2009.
Ma, Q., Jin, H., Yu, C., and Bense, V. F.: Dissolved organic carbon in
permafrost regions: A review, Sci. China Earth Sci., 62, 349–364,
https://doi.org/10.1007/s11430-018-9309-6, 2019.
MacLean, R., Oswood, M. W., Irons, J. G., and McDowell, W. H.: The effect of
permafrost on stream biogeochemistry: A case study of two streams in the
Alaskan (USA) taiga, Biogeochemistry, 47, 239–267, 1999.
Makarieva, O., Nesterova, N., Post, D. A., Sherstyukov, A., and Lebedeva, L.: Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost, The Cryosphere, 13, 1635–1659, https://doi.org/10.5194/tc-13-1635-2019, 2019.
Mark, B. G. and Seltzer, G. O.: Tropical glacier meltwater contribution to
stream discharge: A case study in the Cordillera Blanca, Peru, J. Glaciol.,
49, 271–281, https://doi.org/10.3189/172756503781830746, 2003.
Markov, M. L., Vasilenko, N. G., and Gurevich, E. V: Icing fields of the BAM
zone: expeditionary investigations, in Nestor-History, Saint Petersburg,
Russia, 2016.
McClelland, J. W., Holmes, R. M., Peterson, B. J., and Stieglitz, M.:
Increasing river discharge in the Eurasian Arctic: Consideration of dams,
permafrost thaw, and fires as potential agents of change, J. Geophys. Res.-Atmos., 109, D18102, https://doi.org/10.1029/2004JD004583, 2004.
Moorman, B. J.: Glacier-permafrost hydrology interactions, Bylot Island,
Canada, Proc. 8th Int. Conf. Permafr., 783–788, 2003.
Moorman, B. J. and Michel, F.: Glacial hydrological system characterization
using ground-penetrating radar, Hydrol. Process., 14, 2645–2667,
https://doi.org/10.1002/1099-1085(20001030)14:15<2645::AID-HYP84>3.0.CO;2-2, 2000.
Naegeli, K., Lovell, H., Zemp, M., and Benn, D. I.: Dendritic subglacial
drainage systems in cold glaciers formed by cut-and-closure processes,
Geogr. Ann. Ser. A Phys. Geogr., 96, 591–608, https://doi.org/10.1111/geoa.12059,
2014.
Neal, E. G., Todd Walter, M., and Coffeen, C.: Linking the pacific decadal
oscillation to seasonal stream discharge patterns in Southeast Alaska, J.
Hydrol., 263, 188–197, https://doi.org/10.1016/S0022-1694(02)00058-6, 2002.
O'Donnell, J. A., Aiken, G. R., Walvoord, M. A., and Butler, K. D.: Dissolved
organic matter composition of winter flow in the Yukon River basin:
Implications of permafrost thaw and increased groundwater discharge, Global
Biogeochem. Cy., 26, GB0E06, https://doi.org/10.1029/2012GB004341, 2012.
Pavelsky, T. M. and Zarnetske, J. P.: Rapid decline in river icings detected
in Arctic Alaska: Implications for a changing hydrologic cycle and river
ecosystems, Geophys. Res. Lett., 44, 3228–3235,
https://doi.org/10.1002/2016GL072397, 2017.
Petrone, K. C., Jones, J. B., Hinzman, L. D., and Boone, R. D.: Seasonal
export of carbon, nitrogen, and major solutes from Alaskan catchments with
discontinuous permafrost, J. Geophys. Res., 111, G02020, https://doi.org/10.1029/2005JG000055,
2006.
Pollard, W. H.: Icing processes associated with high Arctic perennial
springs, Axel Heiberg Island, Nunavut, Canada, Permafr. Periglac. Process.,
16, 51–68, https://doi.org/10.1002/ppp.515, 2005.
Pomortscev, O. A., Kashkarov, E. P. and Popov, B. F.: Aufeis: global warming
and processes of ice formation (rhythmic basis of long-term prognosis),
Yakutsk State Univ. Bull., 7, 2010.
Qin, J., Ding, Y., and Han, T.: Quantitative assessment of winter baseflow
variations and their causes in Eurasia over the past 100 years, Cold Reg.
Sci. Technol., 513, 734427, https://doi.org/10.1016/j.aquaculture.2019.734427, 2020.
Raudina, T. V, Loiko, S. V, Lim, A., Manasypov, R. M., Shirokova, L. S.,
Istigechev, G. I., Kuzmina, D. M., Kulizhsky, S. P., Vorobyev, S. N., and
Pokrovsky, O. S.: Permafrost thaw and climate warming may decrease the CO2,
carbon , and metal concentration in peat soil waters of the Western Siberia
Lowland, Sci. Total Environ., 634, 1004–1023,
https://doi.org/10.1016/j.scitotenv.2018.04.059, 2018.
Reedyk, S., Woo, M.-K. K., and Prowse, T. D.: Contribution of icing ablation
to streamflow in a discontinuous permafrost area, Can. J. Earth Sci.,
32, 13–20, https://doi.org/10.1139/e95-002, 1995.
Rennermalm, A. K., Wood, E. F., and Troy, T. J.: Observed changes in
pan-arctic cold-season minimum monthly river discharge, Clim. Dynam., 35,
923–939, https://doi.org/10.1007/s00382-009-0730-5, 2010.
Romanovsky, N. N.: About geological activity of aufeis, in Permafrost
studies, Moscow University, Moscow, 1973.
Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I., and
Lammers, R. B.: Rising minimum daily flows in northern Eurasian rivers: A
growing influence of groundwater in the high-latitude hydrologic cycle, J.
Geophys. Res.-Biogeo., 112, G04S47, https://doi.org/10.1029/2006JG000327, 2007.
Smith, S. L., Burgess, M. M., Riseborough, D., and Nixon, F. M.: Recent
trends from Canadian permafrost thermal monitoring network sites, Permafr.
Periglac. Process., 16, 19–30, https://doi.org/10.1002/ppp.511, 2005.
Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Allard, M.,
Clow, G. D., Yoshikawa, K., and Throop, J.: Thermal state of permafrost in
North America: A contribution to the international polar year, Permafr.
Periglac. Process., 21, 117–135, https://doi.org/10.1002/ppp.690, 2010.
Smith, S. L., Lewkowicz, A. G., Ednie, M., Maxime, A., and Bevington, A.: Characterization of Permafrost Thermal State in the Southern Yukon, 68e Conférence Can. Géotechnique 7e Conférence Can. sur le Pergélisol, Québec, 20–23 September 2015.
Sobota, I.: Icings and their role as an important element of the cryosphere
in High Arctic glacier forefields, Bull. Geogr. Phys. Geogr. Ser., 10,
81–93, 2016.
Stachnik, Ł., Yde, J. C., Kondracka, M., Ignatiuk, D., and Grzesik, M.:
Glacier naled evolution and relation to the subglacial drainage system based
on water chemistry and GPR surveys (Werenskioldbreen, SW Svalbard), Ann.
Glaciol., 57, 19–30, https://doi.org/10.1017/aog.2016.9, 2016.
St. Jacques, J.-M. and Sauchyn, D. J.: Increasing winter baseflow and mean
annual streamflow from possible permafrost thawing in the Northwest
Territories, Canada, Geophys. Res. Lett., 36, L01401,
https://doi.org/10.1029/2008GL035822, 2009.
Tananaev, N. I., Makarieva, O. M., and Lebedeva, L. S.: Trends in annual and
extreme flows in the Lena River basin, Northern Eurasia, Geophys. Res.
Lett., 43, 10764–10772, https://doi.org/10.1002/2016GL070796, 2016.
Tarnocai, C., Nixon, M. F., and Kutny, L.:
Circumpolar-Active-Layer-Monitoring (CALM) sites in the Mackenzie Valley,
northwestern Canada, Permafr. Periglac. Process., 15, 141–153,
https://doi.org/10.1002/ppp.490, 2004.
Thomazo, C., Buoncristiani, J. F., Vennin, E., Pellenard, P., Cocquerez, T.,
Mugnier, J. L., and Gérard, E.: Geochemical processes leading to the
precipitation of subglacial carbonate crusts at bossons glacier, mont blanc
massif (French alps), Front. Earth Sci., 5, 1–16,
https://doi.org/10.3389/feart.2017.00070, 2017.
Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A., and
Koch, J. C.: Multidecadal increases in the Yukon River Basin of chemical
fluxes as indicators of changing flowpaths, groundwater, and permafrost,
Geophys. Res. Lett., 43, 12120–12130, https://doi.org/10.1002/2016GL070817, 2016.
Veiette, J. J. and Thomas, R. D.: Icings and seepage in frozen glaciofluvial
deposits, District of Keewatin, N.W.T., Can. Geotech., 16, 789–798, 1979.
Vogt, T.: Cryogenic Physico-chemical Precipitations?: Iron, Silica,
Calcium Carbonate, Permafr. Periglac. Process., 1, 283–293, 1991.
Wadham, J. L., Tranter, M., and Dowdeswell, J. A.: Hydrochemistry of
meltwaters draining a polythermal-based, high-Arctic glacier, south
Svalbard: II. Winter and early Spring, Hydrol. Process., 14, 1767–1786,
https://doi.org/10.1002/1099-1085(200007)14:10<1767::AID-HYP103>3.0.CO;2-Q, 2000.
Wahl, H. E., Fraser, D. B., Harvey, R. C., and Maxwell, J. B.: Climate of
Yukon, Atmospheric Environment Service, Environment Canada, 1987.
Wainstein, P., Moorman, B. J., and Whitehead, K.: Importance of glacier-permafrost interactions in the preservation of a proglacial icing: Fountain Glacier, Bylot Island, Canada, Ninth Int. Conf. Permafr., 1881–1886 available at: https://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Importance+of+Glacier-Permafrost+Interactions+in+the+Preservation+of+a+Proglacial+Icing+:+Fountain+Glacier+,+Bylot+Island+,+Canada#0 (last access: 13 January 2015), 2008.
Wainstein, P., Moorman, B. J., and Whitehead, K.: Glacial conditions that
contribute to the regeneration of Fountain Glacier proglacial icing, Bylot
Island, Canada, Hydrol. Process., 28, 2749–2760, https://doi.org/10.1002/hyp.9787,
2014.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream
discharge from permafrost thawing in the Yukon River basin: Potential
impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett.,
34, L12402, https://doi.org/10.1029/2007GL030216, 2007.
Wang, S.: Freezing Temperature Controls Winter Water Discharge for Cold
Region Watershed, Water Resour. Res., 55, 10479–10493,
https://doi.org/10.1029/2019WR026030, 2019.
Wilson, N. J., Flowers, G. E., and Mingo, L.: Comparison of thermal structure
and evolution between neighboring subarctic glaciers, J. Geophys. Res.-Earth
Surf., 118, 1443–1459, https://doi.org/10.1002/jgrf.20096, 2013.
Woo, M.-K. K. and Thorne, R.: Winter flows in the Mackenzie drainage system,
Arctic, 67, 238–256, https://doi.org/10.14430/arctic4384, 2014.
Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Ye, H.:
Siberian Lena River hydrologic regime and recent change, J. Geophys. Res.-Atmos., 107, 4694, https://doi.org/10.1029/2002JD002542, 2002.
Yde, J. C. and Knudsen, N. T.: Observations of debris-rich naled associated
with a major glacier surge event, Disko Island, West Greenland, Permafr.
Periglac. Process., 16, 319–325, https://doi.org/10.1002/ppp.533, 2005.
Yde, J. C., Hodson, A. J., Solovjanova, I., Steffensen, J. P., Nørnberg,
P., Heinemeier, J., and Olsen, J.: Chemical and isotopic characteristics of a
glacier-derived naled in front of Austre Grønfjordbreen, Svalbard, Polar
Res., 31, 17628, https://doi.org/10.3402/polar.v31i0.17628, 2012.
Yoshikawa, K., Hinzman, L. D., and Kane, D. L.: Spring and aufeis (icing)
hydrology in Brooks Range, Alaska, J. Geophys. Res.-Biogeo., 112,
G04S43, https://doi.org/10.1029/2006JG000294, 2007.
Žák, K., Onac, B. P., and Perşoiu, A.: Cryogenic carbonates in
cave environments: A review, Quat. Int., 187, 84–96,
https://doi.org/10.1016/j.quaint.2007.02.022, 2008.
Zarga, Y., Ben Boubaker, H., Ghaffour, N., and Elfil, H.: Study of calcium
carbonate and sulfate co-precipitation, Chem. Eng. Sci., 96, 33–41,
https://doi.org/10.1016/j.ces.2013.03.028, 2013.
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
In the context of a ubiquitous increase in winter discharge in cold regions, our results show...