Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3595-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3595-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers
Christopher D. Arp
CORRESPONDING AUTHOR
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, AK 99775, USA
Jessica E. Cherry
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, AK 99775, USA
Alaska-Pacific River Forecast Center, National Weather Service,
Anchorage, AK 99502, USA
Dana R. N. Brown
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks,
AK 99775, USA
Allen C. Bondurant
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, AK 99775, USA
Karen L. Endres
Alaska-Pacific River Forecast Center, National Weather Service,
Fairbanks, AK 99775, USA
Related authors
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-31, https://doi.org/10.5194/essd-2016-31, 2016
Preprint withdrawn
Short summary
Short summary
This study produced a high-resolution dynamical downscaling data set for the Alaskan North Slope and surrounding areas. It helps to resolve the problem of the sparse observation over this region, where routinely and accurately measuring climatic variables is extremely difficult. This data set boosts up multiple research projects that explore the various climatic impacts over the Alaskan North Slope of the past and the future.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-87, https://doi.org/10.5194/tc-2016-87, 2016
Preprint withdrawn
Short summary
Short summary
This paper introduces the development process of a data set that specifically made for climatic impacts research over the Alaskan North Slope. This data set can offset to some extent the sparseness of observation on spatial and temporal scales, retrieving high-resolution climatic backgrounds that enable various studies in the fields of climatology, hydrology, ecology, etc.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Short summary
Remotely sensed snow observations may improve operational streamflow forecasting in remote regions, such as Alaska. In this study, we insert remotely sensed observations of snow extent into the operational framework employed by the US National Weather Service’s Alaska Pacific River Forecast Center. Our work indicates that the snow observations can improve snow estimates and streamflow forecasting. This work provides direction for forecasters to implement remote sensing in their operations.
Jessica E. Cherry, Corrie Knapp, Sarah Trainor, Andrea J. Ray, Molly Tedesche, and Susan Walker
Hydrol. Earth Syst. Sci., 21, 133–151, https://doi.org/10.5194/hess-21-133-2017, https://doi.org/10.5194/hess-21-133-2017, 2017
Short summary
Short summary
We know that climate is changing quickly in the Far North (the Arctic and sub-Arctic). Hydropower continues to grow in this region because water resources are perceived to be plentiful. However, with changes in glacier extent and permafrost, and more extreme events, will those resources prove reliable into the future? This study amasses the evidence that quantitative hydrology modeling and uncertainty assessment have matured to the point where they should be used in water resource planning.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-31, https://doi.org/10.5194/essd-2016-31, 2016
Preprint withdrawn
Short summary
Short summary
This study produced a high-resolution dynamical downscaling data set for the Alaskan North Slope and surrounding areas. It helps to resolve the problem of the sparse observation over this region, where routinely and accurately measuring climatic variables is extremely difficult. This data set boosts up multiple research projects that explore the various climatic impacts over the Alaskan North Slope of the past and the future.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-87, https://doi.org/10.5194/tc-2016-87, 2016
Preprint withdrawn
Short summary
Short summary
This paper introduces the development process of a data set that specifically made for climatic impacts research over the Alaskan North Slope. This data set can offset to some extent the sparseness of observation on spatial and temporal scales, retrieving high-resolution climatic backgrounds that enable various studies in the fields of climatology, hydrology, ecology, etc.
J. K. Heslop, K. M. Walter Anthony, A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Bondurant, G. Grosse, and M. C. Jones
Biogeosciences, 12, 4317–4331, https://doi.org/10.5194/bg-12-4317-2015, https://doi.org/10.5194/bg-12-4317-2015, 2015
Short summary
Short summary
The relative magnitude of thermokarst lake CH4 production in surface sediments vs. deeper-thawed permafrost is not well understood. We assessed CH4 production potentials from a lake sediment core and adjacent permafrost tunnel in interior Alaska. CH4 production was highest in the organic-rich surface lake sediments and recently thawed permafrost at the bottom of the talik, implying CH4 production is highly variable and that both modern and ancient OM are important to lake CH4 production.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
R. L. Herman, J. E. Cherry, J. Young, J. M. Welker, D. Noone, S. S. Kulawik, and J. Worden
Atmos. Meas. Tech., 7, 3127–3138, https://doi.org/10.5194/amt-7-3127-2014, https://doi.org/10.5194/amt-7-3127-2014, 2014
Related subject area
Discipline: Other | Subject: Freshwater Ice
Measurements of frazil ice flocs in rivers
Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019
River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Giant ice rings in southern Baikal: multi-satellite data help to study ice cover dynamics and eddies under ice
Ice roughness estimation via remotely piloted aircraft and photogrammetry
Analyses of Peace River Shallow Water Ice Profiling Sonar data and their implications for the roles played by frazil ice and in situ anchor ice growth in a freezing river
Creep and fracture of warm columnar freshwater ice
Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005
Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia
Continuous in situ measurements of anchor ice formation, growth, and release
Proglacial icings as records of winter hydrological processes
Investigation of spatial and temporal variability of river ice phenology and thickness across Songhua River Basin, northeast China
Chuankang Pei, Jiaqi Yang, Yuntong She, and Mark Loewen
The Cryosphere, 18, 4177–4196, https://doi.org/10.5194/tc-18-4177-2024, https://doi.org/10.5194/tc-18-4177-2024, 2024
Short summary
Short summary
Frazil flocs are aggregates of frazil ice particles that form in supercooled water. As they grow, they rise to the river surface, contributing to ice cover formation. We measured the properties of frazil flocs in rivers for the first time using underwater imaging. We found that the floc size distributions follow a lognormal distribution and mean floc size decreases linearly as the local Reynolds number increases. Floc volume concentration has a power law correlation with the relative depth.
Maksymilian Fukś
The Cryosphere, 18, 2509–2529, https://doi.org/10.5194/tc-18-2509-2024, https://doi.org/10.5194/tc-18-2509-2024, 2024
Short summary
Short summary
This paper presents a method for determining the impact of dam reservoirs on the occurrence of ice cover on rivers downstream of their location. It was found that the operation of dam reservoirs reduces the duration of ice cover and significantly affects the ice regime of rivers. Based on the results presented, it can be assumed that dam reservoirs play an important role in transforming ice conditions on rivers.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023, https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Short summary
Icebergs in open water are a risk to maritime traffic. We have compared six different constant false alarm rate (CFAR) detectors on overlapping C- and L-band synthetic aperture radar (SAR) images for the detection of icebergs in open water, with a Sentinel-2 image used for validation. The results revealed that L-band gives a slight advantage over C-band, depending on which detector is used. Additionally, the accuracy of all detectors decreased rapidly as the iceberg size decreased.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022, https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary
Short summary
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations. We obtained results showing that strong downward shortwave radiation is the main meteorological factor, and precipitation, wind speed, downward longwave radiation, air temperature, ice albedo, and ice extinction coefficient have an impact on the range and rate of lake temperature rise. Once the ice breaks, the lake body releases more energy than other lakes, whose water temperature remains horizontal.
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022, https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Short summary
We examined changes in the dates of ice break-ups in three Finnish rivers since the 1700s. The analyses show that ice break-ups nowadays occur earlier in spring than in previous centuries. The changes are pronounced in the south, and both rivers had their first recorded years without a complete ice cover in the 21st century. These events occurred during exceptionally warm winters and show that climate extremes affect the river-ice regime in southwest Finland differently than in the north.
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022, https://doi.org/10.5194/tc-16-2493-2022, 2022
Short summary
Short summary
Using unique data, some dating back to the 18th century, we show a significant trend in shorter ice duration, later freeze, and earlier break-up dates across Sweden. In recent observations, the mean ice durations have decreased by 11–28 d and the chance of years with an extremely short ice cover duration (less than 50 d) have increased by 800 %. Results show that even a 1 °C increase in air temperatures can result in a decrease in ice duration in Sweden of around 8–23 d.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
James Ehrman, Shawn Clark, and Alexander Wall
The Cryosphere, 15, 4031–4046, https://doi.org/10.5194/tc-15-4031-2021, https://doi.org/10.5194/tc-15-4031-2021, 2021
Short summary
Short summary
This research proposes and tests new methods for the estimation of the surface roughness of newly formed river ice covers. The hypothesis sought to determine if surface ice roughness was indicative of the subsurface. Ice roughness has consequences for winter flow characteristics of rivers and can greatly impact river ice jams. Remotely piloted aircraft and photogrammetry were used, and good correlation was found between the observed surface ice roughness and estimated subsurface ice roughness.
John R. Marko and David R. Topham
The Cryosphere, 15, 2473–2489, https://doi.org/10.5194/tc-15-2473-2021, https://doi.org/10.5194/tc-15-2473-2021, 2021
Short summary
Short summary
Acoustic backscattering data from Peace River frazil events are interpreted to develop a quantitative model of interactions between ice particles in the water column and riverbed ice layers. Two generic behaviours, evident in observed time variability, are linked to differences in the relative stability of in situ anchor ice layers which develop at the beginning of each frazil interval and are determined by cooling rates. Changes in these layers are shown to control water column frazil content.
Iman E. Gharamti, John P. Dempsey, Arttu Polojärvi, and Jukka Tuhkuri
The Cryosphere, 15, 2401–2413, https://doi.org/10.5194/tc-15-2401-2021, https://doi.org/10.5194/tc-15-2401-2021, 2021
Short summary
Short summary
We study the creep and fracture behavior of 3 m × 6 m floating edge-cracked rectangular plates of warm columnar freshwater S2 ice under creep/cyclic-recovery loading and monotonic loading to fracture. Under the testing conditions, the ice response was elastic–viscoplastic; no significant viscoelasticity or major recovery was detected. There was no clear effect of the creep/cyclic loading on the fracture properties: failure load and crack opening displacements at crack growth initiation.
Andrew M. W. Newton and Donal J. Mullan
The Cryosphere, 15, 2211–2234, https://doi.org/10.5194/tc-15-2211-2021, https://doi.org/10.5194/tc-15-2211-2021, 2021
Short summary
Short summary
This paper investigates changes in the dates of ice freeze-up and breakup for 678 Northern Hemisphere lakes and rivers from 1931–2005. From 3510 time series, the results show that breakup dates have gradually occurred earlier through time, whilst freeze-up trends have tended to be significantly more variable. These data combined show that the number of annual open-water days has increased through time for most sites, with the magnitude of change at its largest in more recent years.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Tadros R. Ghobrial and Mark R. Loewen
The Cryosphere, 15, 49–67, https://doi.org/10.5194/tc-15-49-2021, https://doi.org/10.5194/tc-15-49-2021, 2021
Short summary
Short summary
Anchor ice typically forms on riverbeds during freeze-up and can alter the river ice regime. Most of the knowledge on anchor ice mechanisms has been attributed to lab experiments. This study presents for the first time insights into anchor ice initiation, growth, and release in rivers using an underwater camera system. Three stages of growth and modes of release have been identified. These results will improve modelling capabilities in predicting the effect of anchor ice on river ice regimes.
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020, https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Cited articles
Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice
decline contributes to thinning lake ice trend in northern Alaska, Environ.
Res. Lett., 11, 1–9, 2016.
Allen, W. T. R.: Freeze-up, break-up, and ice thickness in Canada, Fisheries
and Environment Canada, Report CLI-1-77, 185 p., 1977.
Arp, C.: Lake ice thickness observations for arctic Alaska from 1962 to 2017, Arctic Data Center, https://doi.org/10.18739/A2G27V, 2018a.
Arp, C.: Arctic Alaska Tundra and Lake Snow Surveys from 2012–2018, Arctic Data Center, https://doi.org/10.18739/A2G15TB05, 2018b.
Arp, C. and Cherry, J.: Seasonal maximum ice thickness data for rivers and lakes in Alaska from 1962 to 2019, Arctic Data Center, https://doi.org/10.18739/A26688J9Z, 2020.
Arp, C. D. and Jones, B. M.: Geography of Alaska Lake Districts:
Identification, description, and analysis of lake-rich regions of a diverse
and dynamic state, U.S. Geological Survey, Reston, Virginia, 40 pp., 2009.
Arp, C. D., Jones, B. M., Whitman, M., Larsen, A., Urban, F. E.: Lake temperature and ice
cover regimes in the Alaskan Subarctic and Arctic: Integrated monitoring, remote sensing, and modeling, J. Am. Water Resour. As., 46, 777–791, 2010.
Arp, C. D., Jones, B. M., and Grosse, G.: Recent lake ice-out phenology
within and among lake districts of Alaska, U.S.A., Limnol.
Oceanogr., 58, 2013–2028, 2013.
Arp, C. D., Jones, B. M., Engram, M., Alexeev, V. A., Cai, L., Parsekian,
A., Hinkel, K., Bondurant, A. C., and Creighton, A.: Contrasting lake ice
responses to winter climate indicate future variability and trends on the
Alaskan Arctic Coastal Plain, Environ. Res. Lett., 13, 125001, https://doi.org/10.1088/1748-9326/aae994, 2018.
Ashton, G. D.: Thin ice growth, Water Resour. Res., 25, 564–566,
1989.
Ashton, G. D.: River and lake ice thickening, thinning, and snow ice
formation, Cold Reg. Res. Technol., 68, 3–19, 2011.
Bilello, M. A.: Method for predicting river and lake ice formation, J. Appl. Meteorol., 3, 38–44, 1964.
Bilello, M. A.: Maximum thickness and subsequent decay of lake, river, and
fast sea ice in Canada and Alaska, U.S. Army, 160 pp., 1980.
Bilello, M.: River and lake ice thickness and snow depth at near maximum ice thickness and during ice decay in Alaska, 1961–1974, Arctic Data Center, https://doi.org/10.18739/A2FF3M027, 2019.
Brabets, T. P. and Walvoord, M. A.: Trends in streamflow in the Yukon River
Basin from 1944 to 2005 and the influence of the Pacific Decadal
Oscillation, J. Hydrol., 371, 108–119,
https://doi.org/10.1016/j.jhydrol.2009.03.018, 2009.
Brewer, M. C.: The thermal regime of an arctic lake, Transactions of the
American Geophysical Union, 39, 278–284, 1958.
Brown, D. R. N., Brinkman, T. J., Verbyla, D. L., Brown, C. L., Cold, H. S.,
and Hollingsworth, T. N.: Changing River Ice Seasonality and Impacts on
Interior Alaskan Communities, Weather Clim. Soc., 10, 625–640,
2018.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in
lake-climate interactions, Prog. Phys. Geogr., 34, 671–704,
2010.
Cherry, J. E.: Alaska Climate Dispatch, Summer 2019. Another Season of
Dangerous Ice Conditions, available at:
https://uaf-accap.org/wp-content/uploads/2019/08/climate-dispatch_2019.pdf, last access: 1 February 2020.
Cold, H. S., Brinkman, T. J., Brown, C. L., Hollingsworth, T. N.,
Brown, D. R. N., and Heeringa, K. M.: Assessing vulnerability of subsistence
travel to effects of environmental change in Interior Alaska, Ecol.
Soc., 25, 20,
https://doi.org/10.5751/ES-11426-250120, 2020.
Cooley, S. W. and Pavelsky, T. M.: Spatial and temporal patterns in Arctic
river ice breakup revealed by automated ice detection from MODIS imagery,
Remote Sens. Environ., 175, 310–322, 2016.
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., and Meyer, F. J.:
Analyzing floating and bedfast lake ice regimes across Arctic Alaska using
25 years of space-borne SAR imagery, Remote Sens. Environ., 209,
660–676, 2018.
Fleischer, N. L., Melstrom, P., Yard, E., Brubaker, M., and Thomas, T.: The
epidemiology of falling-through-the-ice in Alaska, 1990–2010, J.
Public Health, 36, 235–242, 2014.
Gold, L. W.: Use of Ice Covers for Transportation, Can. Geotech.
J., 8, 170–181, https://doi.org/10.1139/t71-018, 1971.
Gould, M. and Jeffries, M.: Temperature variation in lake ice in central
Alaska, USA, Ann. Glaciol., 40, 1–6, 2005.
Hinkel, K. M., Lenters, J. D., Sheng, Y. W., Lyons, E. A., Beck, R. A.,
Eisner, W. R., Maurer, E. F., Wang, J. D., and Potter, B. L.: Thermokarst
Lakes on the Arctic Coastal Plain of Alaska: Spatial and Temporal
Variability in Summer Water Temperature, Permafrost Periglac., 23, 207–217, 2012.
Jeffries, M. O., Morris, K., and Duguay, C. R.: Lake ice growth and decay in
central Alaska, USA: observations and computer simulations compared, Ann.
Glaciol., 40, 1–5, 2005.
Jones, C., Kielland, K., and Hinzman, L.: Modeling groundwater upwelling as
a control on rivder ie thickness, Hydrol. Res., 46, 566–577, 2015.
Jumikis, A. R.: Thermal Geotechnics, Rutgers University Press, New Brunswick,
NJ, 375 pp., 1977.
Leppäranta, M.: Freezing of Lakes and the Evolution of their Ice Cover,
Springer Publishing, New York, 301 pp., 2015.
Liljedahl, A. K., Gädeke, A., O'Neel, S., Gatesman, T. A., and Douglas, T. A.:
Glacierized headwater streams as aquifer recharge corridors, subarctic
Alaska, Geophys. Res. Lett., 44, 6876–6885 https://doi.org/10.1002/2017gl073834,
2017.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin,
N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: Historical
trends in lake and river ice cover in the Northern Hemisphere, Science, 289,
1743–1747, 2000.
Morris, K. and Jeffries, M.: Alaska Lake Ice and Snow Observatory Network
(ALISON), in: Polar Science and Global Climate: An International Resource
for Education and Outreach, edited by: Kaiser, B., Allen, B., and Zicus, S.,
Pearson Education Limited, Harlow, Essox, UK, 2010.
Morris, K. and Jefrries, M.: Alaska Lake Ice and Snow Observatory Network (ALISON) Project Data, Alaska, 1999–2011, Arctic Data Center, https://doi.org/10.18739/A2K35MD3N, 2019.
Prowse, T. D. and Beltaos, S.: Climatic control of river-ice hydrology: a
review, Hydrol. Process., 16, 805–822, 2002.
Ray, P. H.: Report of the International Polar Expedition to Point Barrow,
Alaska, Government Printing Office, Washington, D.C., 1885.
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts,
Geophys. Res. Lett., 31, 1–4, 2004.
Sagarin, R. and Micheli, F.: Climate Change in Nontraditional Data Sets,
Science, 294, 811–811, 2001.
Schneider, W. S., Brewster, K., Kielland, K., and Jones, C. E.: On Dangerous
Ice: Changing Conditions on the Tanana River, University of Alaska
Fairbanks, Fairbanks, Alaska, 76 pp., 2013.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
2011.
Serreze, M. C. and Francis, J. A.: The arctic amplification debate, Clim.
Change, 76, 241–264, 2006.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S.,
Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., and
Woolway, R. I.: Widespread loss of lake ice around the Northern Hemisphere
in a warming world, Nat. Clim. Change, 9, 227–231, 2019.
Smejkalova, T., Edwards, M. E., and Dash, J.: Arctic lakes show strong
decadal trend in earlier spring ice-out, Sci. Rep.-UK, 6, 1–8, https://doi.org/10.1038/srep38449, 2017.
Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die
Eisbildung im Polarmeer, Ann. Phys. Chem., 42, 269–286, 1891.
Sturm, M. and Liston, G. E.: The snow cover on lakes of the Arctic Coastal
Plain of Alaska, U.S.A., J. Glaciol., 49, 370–380, 2003.
Walsh, J. E. and Brettschneider, B.: Attribution of recent warming in
Alaska, Polar Sci., 21, 101–109, 2019.
Weeks, W. F., Fountain, A. G., Bryan, M. L., and Elachi, C.: Differences in
radar return from ice-covered North Slope lakes, J. Geophys.
Res., 83, 4069–4073, 1978.
Wendler, G., Moore, B., and Galloway, K.: Strong temperature increase and
shrinking sea ice in Arctic Alaska, The Open Atmospheric Science Journal, 8,
7–15, 2014.
Weyhenmeyer, G. A., Livingstone, D. M., Meili, M., Jensen, O., Benson, B.,
and Magnuson, J. J.: Large geographical differences in the sensitivity of
ice-covered lakes and rivers in the Northern Hemisphere to temperature
changes, Global Change Biol., 17, 268–275, 2011.
Yang, X., Pavelsky, T. M., and Allen, G. H.: The past and future of global
river ice, Nature, 577, 69–73, 2020.
Zhang, T. and Jeffries, M. O.: Modeling interdecadal variations of lake-ice
thickness and sensitivity to climatic change in northernmost Alaska, Ann. Glaciol., 31, 339–347, 2000.
Short summary
River and lake ice thickens at varying rates geographically and from year to year. We took a closer look at ice growth across a large geographic region experiencing rapid climate change, the State of Alaska, USA. Slower ice growth was most pronounced in northern Alaskan lakes over the last 60 years. Western and interior Alaska ice showed more variability in thickness and safe travel duration. This analysis provides a comprehensive evaluation of changing freshwater ice in Alaska.
River and lake ice thickens at varying rates geographically and from year to year. We took a...