Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3595-2020
https://doi.org/10.5194/tc-14-3595-2020
Research article
 | 
31 Oct 2020
Research article |  | 31 Oct 2020

Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers

Christopher D. Arp, Jessica E. Cherry, Dana R. N. Brown, Allen C. Bondurant, and Karen L. Endres

Related authors

Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021,https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Dynamical Downscaling Data for Studying Climatic Impacts on Hydrology, Permafrost, and Ecosystems in Arctic Alaska
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-31,https://doi.org/10.5194/essd-2016-31, 2016
Preprint withdrawn
Short summary
Dynamical Downscaling Data for Studying Climatic Impacts on Hydrology, Permafrost, and Ecosystems in Arctic Alaska
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-87,https://doi.org/10.5194/tc-2016-87, 2016
Preprint withdrawn
Short summary
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015,https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary

Related subject area

Discipline: Other | Subject: Freshwater Ice
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023,https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022,https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022,https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022,https://doi.org/10.5194/tc-16-2493-2022, 2022
Short summary
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022,https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary

Cited articles

Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska, Environ. Res. Lett., 11, 1–9, 2016. 
Allen, W. T. R.: Freeze-up, break-up, and ice thickness in Canada, Fisheries and Environment Canada, Report CLI-1-77, 185 p., 1977. 
Arp, C.: Lake ice thickness observations for arctic Alaska from 1962 to 2017, Arctic Data Center, https://doi.org/10.18739/A2G27V, 2018a. 
Arp, C.: Arctic Alaska Tundra and Lake Snow Surveys from 2012–2018, Arctic Data Center, https://doi.org/10.18739/A2G15TB05, 2018b. 
Arp, C. and Cherry, J.: Seasonal maximum ice thickness data for rivers and lakes in Alaska from 1962 to 2019, Arctic Data Center, https://doi.org/10.18739/A26688J9Z, 2020. 
Download
Short summary
River and lake ice thickens at varying rates geographically and from year to year. We took a closer look at ice growth across a large geographic region experiencing rapid climate change, the State of Alaska, USA. Slower ice growth was most pronounced in northern Alaskan lakes over the last 60 years. Western and interior Alaska ice showed more variability in thickness and safe travel duration. This analysis provides a comprehensive evaluation of changing freshwater ice in Alaska.