Articles | Volume 13, issue 12
The Cryosphere, 13, 3413–3434, 2019
https://doi.org/10.5194/tc-13-3413-2019
The Cryosphere, 13, 3413–3434, 2019
https://doi.org/10.5194/tc-13-3413-2019

Research article 20 Dec 2019

Research article | 20 Dec 2019

Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier

Rebecca Gugerli et al.

Related authors

Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers
Rebecca Gugerli, Darin Desilets, and Nadine Salzmann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-277,https://doi.org/10.5194/tc-2021-277, 2021
Revised manuscript accepted for TC
Short summary
Multi-sensor analysis of monthly gridded snow precipitation on alpine glaciers
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021,https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Instrumentation
Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation
Anton Jitnikovitch, Philip Marsh, Branden Walker, and Darin Desilets
The Cryosphere, 15, 5227–5239, https://doi.org/10.5194/tc-15-5227-2021,https://doi.org/10.5194/tc-15-5227-2021, 2021
Short summary
Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE)
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021,https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers
Rebecca Gugerli, Darin Desilets, and Nadine Salzmann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-277,https://doi.org/10.5194/tc-2021-277, 2021
Revised manuscript accepted for TC
Short summary
GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-235,https://doi.org/10.5194/tc-2021-235, 2021
Revised manuscript accepted for TC
Short summary
Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020,https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary

Cited articles

Ali, S. A., Aadhar, S., Shah, H. L., and Mishra, V.: Projected Increase in Hydropower Production in India under Climate Change, Sci. Rep., 8, 12450, https://doi.org/10.1038/s41598-018-30489-4, 2018. a
Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., and Looms, M. C.: Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications, Vadose Zone J., 16, 1–11, https://doi.org/10.2136/vzj2017.04.0086, 2017. a, b, c, d
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a
Campbell Scientific: Instruction Manual SR50A, SR50A-316SS and SR50AH Sonic Ranging Sensors, revision: 10/16 edn., available at: https://s.campbellsci.com/documents/us/manuals/sr50a.pdf (last access: 14 December 2019), 2016. a, b
Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S.: Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods, The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, 2014. a
Download
Short summary
The snow water equivalent (SWE) in high mountain regions is crucial for many applications. Yet its quantification remains difficult. We present autonomous daily SWE observations by a cosmic ray sensor (CRS) deployed on a Swiss glacier for two winter seasons. Combined with snow depth observations, we derive the daily bulk snow density. The validation with manual field observations and its measurement reliability show that the CRS is a promising device for high alpine cryospheric environments.